精英家教网 > 高中数学 > 题目详情
函数f(x)=cos(2x+
π
6
)的周期为
 
考点:三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:由三角函数的周期性及其求法可直接求出.
解答: 解:∵f(x)=cos(2x+
π
6
),
∴三角函数的周期性及其求法可得T=
2

故答案为:π
点评:本题主要考查了三角函数的周期性及其求法,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“m=2“是“f(x)=x2+2(m2-m-2)x+2”为偶函数”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=g(x)的图象与函数f(x)=ax-1的图象关于y=x对称,并且g(4)=2,则g(2)的值是(  )
A、-
1
2
B、
3
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-2,2]上的奇函数,当x∈(0,2]时,f(x)=2x-1,函数g(x)=x2-2x+m.如果对于?x1∈[-2,2],?x2∈[-2,2],使得g(x2)=f(x1),则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列{an}中,已知a1<a2015=1,若集A={t|(a1-
1
a1
)+(a2-
1
a2
)+…+(at-
1
at
)≤0,t∈N*},则A中元素个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+k•2-x(x∈R).
(1)判断函数f(x)的奇偶性,并说明理由;
(2)设k>0,问函数f(x)的图象是否关于某直线x=m成轴对称图形,如果是,求出m的值;如果不是,请说明理由;(可利用真命题:“函数g(x)的图象关于某直线x=m成轴对称图形”的充要条件为“函数g(m+x)是偶函数”)
(3)设k=-1,函数h(x)=a•2x-21-x-
4
3
a,若函数f(x)与h(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若z∈C,且(1+i)z=3+4i,则复数z的虚部是(  )
A、
7
2
B、
1
2
C、
1
2
i
D、
7
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过圆O:x2+y2=1上一动点M作平行与y轴的直线l,设直线l交与x轴于点N,
OQ
=
OM
+
ON
的点Q的轨迹为曲线N.
(1)求曲线方程;
(2)若过点(-3,0)的直线l与曲线N有两个不同的交点,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y的约束条件为
x-y+1>0
2x+y-4<0
y≥-1
,则x2+(y+2)2的取值范围是(  )
A、(
9
4
,5)
B、[1,5)
C、(
9
4
,17)
D、[1,17)

查看答案和解析>>

同步练习册答案