精英家教网 > 高中数学 > 题目详情

【题目】已知三点A(a,0),B(0,b),C(2,2),其中a>0,b>0.

(1)若O是坐标原点,且四边形OACB是平行四边形,试求a,b的值.

(2)若A,B,C三点共线,试求a+b的最小值.

【答案】(1)a=2,b=2(2)a+b的最小值是8

【解析】

(1)由于四边形OACB是平行四边形,可得,利用坐标运算与向量相等即可得出.

(2)利用向量共线定理与基本不等式的性质即可得出.

(1)因为四边形OACB是平行四边形,

所以=,即(a,0)=(2,2-b),

解得故a=2,b=2.

(2)因为=(-a,b),=(2,2-b),

由A,B,C三点共线,得

所以-a(2-b)-2b=0,即2(a+b)=ab,

因为a>0,b>0,

所以2(a+b)=ab≤

即(a+b)2-8(a+b)≥0,

解得a+b≥8或a+b≤0.

因为a>0,b>0,

所以a+b≥8,即a+b的最小值是8.

当且仅当a=b=4时,“=”成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右顶点分别为AB,离心率为,点P1)为椭圆上一点.

1)求椭圆C的标准方程;

2)如图,过点C01)且斜率大于1的直线l与椭圆交于MN两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求函数的单调区间;

(Ⅱ)若上恒成立,求正数的取值范围;

(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,,△是等边三角形,分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)若二面角的大小为,求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率最高的甲、乙两家网络外卖企业(以下简称外卖甲,外卖乙)的经营情况进行了调查,调查结果如表:

1日

2日

3日

4日

5日

外卖甲日接单(百单)

5

2

9

8

11

外卖乙日接单(百单)

2.2

2.3

10

5

15

(1)据统计表明,之间具有线性相关关系.

(ⅰ)请用相关系数加以说明:(若,则可认为有较强的线性相关关系(值精确到0.001))

(ⅱ)经计算求得之间的回归方程为.假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于2500单时,外卖甲所获取的日纯利润的大致范围:(值精确到0.01)

(2)试根据表格中这五天的日接单量情况,从平均值和方差角度说明这两家外卖企业的经营状况.

相关公式:相关系数

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两顶点和垂心.

1)求直线AB的方程;

2)求顶点C的坐标;

3)求BC边的中垂线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆Cab0)的左、右焦点分别为F1F2P为椭圆C上一点,且PF2垂直于x轴,连结PF1并延长交椭圆于另一点Q,设

1)若点P的坐标为(23),求椭圆C的方程及λ的值;

2)若4≤λ≤5,求椭圆C的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个关于圆锥曲线的命题中:

①设为两个定点,为非零常数,若,则动点的轨迹是双曲线;

②方程的两根可分别作为椭圆和双曲线的离心率;

③双曲线与椭圆有相同的焦点;

④已知抛物线,以过焦点的一条弦为直径作圆,则此圆与准线相切,其中真命题为__________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an=logn+1n+2)(nN*)定义使a1a2ak为整数的数k叫做企盼数,则区间[12019]内所有的企盼数的和是______

查看答案和解析>>

同步练习册答案