精英家教网 > 高中数学 > 题目详情
在数列{an}和{bn}中,已知a1=2,a2=6,an+2an=3an+12(n∈N*),bn=
an+1
an

(1)求证:数列{bn}是等比数列;
(2)求数列{an}的通项公式;
(3)若Pn=
1
log3
an+1
2
,Sn为数列{pn}的前n项和,求Sn
考点:数列的求和,等比数列的性质,数列递推式
专题:等差数列与等比数列
分析:(1)利用等比数列的定义证明即可;
(2)利用累乘法求数列的通项公式;
(3)利用裂项相消法求数列的和即可.
解答: (1)证明:∵an+2an=3an+12(n∈N*)∴
bn+1
bn
=
an+2
an+1
an+1
an
=
an+2an
an+12
=
3an+12
an+12
=3

所以数列{bn}是以3为公比的等比数列;….(4分)
(2)解:由(1)可得到bn=b1qn-1=
a2
a1
qn-1=
6
2
×3n-1=3n

所以bn=
an+1
an
=3n

所以
a2
a1
=31
a3
a2
=32
a4
a3
=33
an
an-1
=3n-1
a2
a1
×
a3
a2
×
a4
a3
×…×
an
an-1
=31×32×33×…×3n-1
an
a1
=31+2+3+…+(n-1)=3
n2-n
2

又因为:∵a1=2,∴an=a1×3
n2-n
2
=2×3
n2-n
2
…(8分)
(3)解:由(2)得:an=2×3
n2-n
2

所以pn=
1
log3
an+1
2
=
1
log33
(n+1)2-(n+1)
2
=
2
n2+n
=
2
n(n+1)
=
2
n
-
2
n+1

所以
Sn=p1+p2+p3+…+pn
=(
2
1
-
2
2
)+(
2
2
-
2
3
)+(
2
3
-
2
4
)+…+(
2
n
-
2
n+1
)
=2-
2
n+1
=
2n
n+1

…(12分)
点评:本题主要考查等比数列的定义及性质,考查利用累乘法求数列的通项公式及利用裂项相消法求数列和等知识,考查学生的运算求解能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的通项公式满足an=2n-7(n∈N*),则|a1|+|a2|+…+|a15|=(  )
A、130B、139
C、153D、178

查看答案和解析>>

科目:高中数学 来源: 题型:

若无穷数列{an}满足:①对任意n∈N*,
an+an+2
2
an+1
;②存在常数M,对任意n∈N*,an≤M,则称数列{an}为“T数列”.
(Ⅰ)若数列{an}的通项为an=8-2n(n∈N*),证明:数列{an}为“T数列”;
(Ⅱ)若数列{an}的各项均为正整数,且数列{an}为“T数列”,证明:对任意n∈N*,an≤an+1
(Ⅲ)若数列{an}的各项均为正整数,且数列{an}为“T数列”,证明:存在 n0∈N*,数列{an0+n}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}中,a1=t,其前n项和为Sn,满足2Sn=an•an+1
(1)如果数列{an}为等差数列,求t的取值,并求出数列{an}的通项公式;
(2)如果数列{an}为单调递增数列,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的三视图如图所示,四棱锥P-ABCD的五个顶点都在一个球面上,E、F分别是棱AB、CD的中点,直线EF被球面所截得的线段长为2
2
,则该球表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-a|-ln(x+1)
(1)当a=0时,求函数f(x)的单调区间;
(2)当a=-1时,若?x∈[0,+∞),f(x)≤(k+1)x2恒成立,求实数k的最小值;
(3)证明:
n
i=1
2
2i-1
-ln(2n+1)<2(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂某种产品的年产量为1000x件,其中x∈[20,100],需要投入的成本为C(x),当x∈[20,80]时,C(x)=
1
2
x2-30x+500(万元);当x∈(80,100]时,C(x)=
20000
x
(万元).若每一件商品售价为
lnx
x
(万元),通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于x的函数解析式;
(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|(a>0),且不等式f(x)≥|x+1|的解集为{x|x≤
1
2
}.
(Ⅰ)求a的值;
(Ⅱ)设函数g(x)=f(x)+|2x+1|,若不等式|2m+3|+|m-3|≥|m|•g(x)对任意m∈R且m≠0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|x>1},则集合∁UA=
 

查看答案和解析>>

同步练习册答案