精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(x-2)是偶函数,且对任意x∈R恒有f(3-x)+f(x-1)=2014,又f(4)=2013,则f(2014)=
 
考点:抽象函数及其应用,函数奇偶性的性质
专题:计算题,函数的性质及应用
分析:运用偶函数的定义,将x换为-x,再根据?x∈R,有f(3-x)+f(x-1)=2014,得到f(x+4)+f(x-2)=2014,将x换为x+2,再将x换为x+6,得到函数f(x)的最小正周期为12,从而得到f(2014)=f(-2),再令x=-1,代入f(3-x)+f(x-1)=2014可得f(-2)=1,从而可得结论.
解答: 解:∵定义在R上的函数f(x)满足f(x-2)是偶函数,
∴f(-x-2)=f(x-2),
∵?x∈R,有f(3-x)+f(x-1)=2014,
∴f(4-x)+f(x-2)=2014,
∴f(4-x)+f(-2-x)=2014,
即f(x+4)+f(x-2)=2014,
将x换为x+2,得f(x+6)+f(x)=2014,
将x换为x+6,得f(x+12)+f(x+6)=2014,
∴f(x+12)=f(x),
即函数f(x)的最小正周期为12,
∴f(2014)=f(12×167+10)=f(10)=f(-2),
又∵?x∈R,有f(3-x)+f(x-1)=2014,
令x=-1,得f(4)+f(-2)=2014,
∵f(4)=2013,∴f(-2)=1,
∴f(2014)=1.
故答案为:1.
点评:本题主要考查函数的奇偶性和周期性及其运用,考查解决抽象函数的常用方法:赋值法,正确赋值是解决此类问题的关键,务必掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上.
(1)求圆心为C的圆的标准方程;
(2)点P是圆C上的任一点,求当点P到直线x+y-5=0的距离最小时,P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
kx
|x|+1
,k>0.
(1)试判断f(x)的奇偶性,并写出其单调增区间;
(2)若不等式f[log2(4x+16)]+f(t-x)>0恒成立,求t的取值范围;
(3)若关于x的方程f(x)=x恰有一根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱柱ABCD-A′B′C′D′的底面是正方形,O是底面的中心,A′O=1,AB=AA′=A′D=A′B=
2

(1)证明:平面A′BD∥平面B′CD′;
(2)求二面角A-BC-B′的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|a+1<x<2a-3},B={x|x≥3},且满足A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2+5x,{an}为公差不为0的等差数列,若a1+a2+…+a10=10,则f(a1)+f(a2)+…+f(a10)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{
1
an+2
}成等差数列,且a3=-
11
6
,a5=-
13
7
,则a8=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

实系数一元二次方程x2+ax+b=0的一根为x1=
3+i
1+i
(其中i为虚数单位),则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an},满足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52=15,则a1-a2+a3-a4+a5的值是(  )
A、3
B、
5
C、-
5
D、5

查看答案和解析>>

同步练习册答案