【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),将曲线经过伸缩变换后得到曲线.在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;
(2)已知点是曲线上的任意一点,求点到直线的距离的最大值和最小值.
【答案】(1)为圆心在原点,半径为2的圆, (2)取到最小值为最大值为
【解析】试题分析:(1)利用三角恒等式消元法消去参数可得曲线的普通方程,再利用放缩公式可得曲线方程,从而可判定是哪一种曲线,利用极坐标护互化公式可得的方程化为极坐标方程;(2)利用的参数方程设出点的坐标,利用点到直线距离公式、辅助角公式及三角函数的有界性可得结果.
试题解析:(1)因为曲线的参数方程为(为参数),
因为,则曲线的参数方程.
所以的普通方程为.
所以为圆心在原点,半径为2的圆.
所以的极坐标方程为,即.
(2)解法:直线的普通方程为.
曲线上的点到直线的距离.
当即时, 取到最小值为.
当即时, 取到最大值为.
科目:高中数学 来源: 题型:
【题目】一个地区共有5个乡镇,共30万人,其人口比例为3∶2∶5∶2∶3,从这30万人中抽取一个300人的样本,分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关,则应采取什么样的抽样方法?并写出具体过程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示,其中一个数字被污损.
(I)求东部观众平均人数超过西部观众平均人数的概率.
(II)节目的播出极大激发了观众随机统计了4位观众的周均学习成语知识的的时间y (单位:小时)与年龄x(单位:岁),并制作了对照表(如下表所示):
由表中数据分析,x,y呈线性相关关系,试求线性回归方程,并预测年龄为60岁观众周均学习成语知识的时间.
参考数据:线性回归方程中的最小二乘估计分别是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,底面是等腰直角三角形, ,侧棱,点分别为棱的中点, 的重心为,直线垂直于平面.
(1)求证:直线平面;
(2)求二面角的余弦.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),将曲线经过伸缩变换后得到曲线.在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;
(2)已知点是曲线上的任意一点,求点到直线的距离的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P为椭圆上一点(在x轴上方),连结PF1并延长交椭圆于另一点Q,设=λ.
(1)若点P的坐标为(1,),且△PQF2的周长为8,求椭圆C的方程;
(2)若PF2垂直于x轴,且椭圆C的离心率e∈[,],求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位计划在一水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来3年中,设表示流量超过120的年数,求的分布列及期望;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:
年入流量 | |||
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求证:平面ABC⊥平面ACD;
(2)若E为AB中点,求点A到平面CED的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com