【题目】已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
![]()
(1)求证:平面ABC⊥平面ACD;
(2)若E为AB中点,求点A到平面CED的距离.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)将函数
的图像(纵坐标不变)横坐标伸长为原来的
倍,再把整个图像向左平移
个单位长度得到
的图像.当
时,求函数
的值域;
(2)若函数
在
内是减函数,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数),将曲线
经过伸缩变换
后得到曲线
.在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)说明曲线
是哪一种曲线,并将曲线
的方程化为极坐标方程;
(2)已知点
是曲线
上的任意一点,求点
到直线
的距离的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对任意
,
有唯一确定的
与之对应,则称
为关于
,
的二元函数,现定义满足下列性质的
为关于实数
,
的广义“距离”.
(
)非负性:
,当且仅当
时取等号;
(
)对称性:
;
(
)三角形不等式:
对任意的实数
均成立.
给出三个二元函数:①
;②
;③
,
则所有能够成为关于
,
的广义“距离”的序号为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知中心在原点,焦点在
轴上的椭圆的一个焦点为
,
是椭圆上的一个点.
(1)求椭圆的标准方程;
(2)设椭圆的上、下顶点分别为
,
(
)是椭圆上异于
的任意一点,
轴,
为垂足,
为线段
中点,直线
交直线
于点
,
为线段
的中点,如果
的面积为
,求
的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥
的底面的菱形,
,点E是BC边的中点,AC和DE交于点O,PO
;
![]()
(1)求证:
;
(2)
求二面角P-AD-C的大小。
(3)在(2)的条件下,求异面直线PB与DE所成角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等腰梯形
中(如图1),
,
,
为线段
的中点,
为线段
上的点,
,现将四边形
沿
折起(如图2).
![]()
![]()
图1 图2
⑴求证:
平面
;
⑵在图2中,若
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
![]()
(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的
列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
![]()
附:
,
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有
人,超过10000步的有
人,设
,求
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com