分析 (1)根据三角函数的定义求解即可.
(2)$f(x)=(\overrightarrow{OA}+\overrightarrow{OB})•\overrightarrow{OP}$,求出f(x)的解析式,化简,利用三角函数的性质求解即可.
解答 解:(1)由题意,因点P是圆O:x2+y2=1与x轴正半轴的交点,又$x=\frac{π}{2}$,
且半径OA绕原点O逆时针旋转$\frac{π}{3}$得到半径OB,
∴$∠POB=\frac{5π}{6}$.
由三角函数的定义,得$\frac{x_B}{1}=cos\frac{5π}{6}$,$\frac{y_B}{1}=sin\frac{5π}{6}$,
解得${x_B}=-\frac{{\sqrt{3}}}{2}$,${y_B}=\frac{1}{2}$.
∴$B(-\frac{{\sqrt{3}}}{2},\frac{1}{2})$.
(2)依题意,$\overrightarrow{OP}=(1,0)$,$\overrightarrow{OA}=(cosx,sinx)$,$\overrightarrow{OB}=(cos(x+\frac{π}{3}),sin(x+\frac{π}{3}))$,
由$f(x)=(\overrightarrow{OA}+\overrightarrow{OB})•\overrightarrow{OP}$,
∴$f(x)=cos(x+\frac{π}{3})+cosx=\frac{3}{2}cosx-\frac{{\sqrt{3}}}{2}sinx$,
∴$f(x)=\sqrt{3}(\frac{{\sqrt{3}}}{2}cosx-\frac{1}{2}sinx)=-\sqrt{3}sin(x-\frac{π}{3})$,
∵0<x<π,
则$-\frac{π}{3}<x-\frac{π}{3}<\frac{2π}{3}$,
∴当$x-\frac{π}{3}=\frac{π}{2}$时,即$x=\frac{5π}{6}$,
函数f(x)取最小值为$-\sqrt{3}$.
点评 本题考查了三角函数的定义和性质的运用.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1或-1 | B. | 1 | C. | -1 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com