精英家教网 > 高中数学 > 题目详情
在正方形中,沿对角线将正方形折成一个直二面角,则点到直线的距离为(       )
A.B.C.D.
C

分析:先找出二面角B-AC-D的平面角,根据直二面角的定义可求出BD的长,从而得到三角形BCD为等边三角形,则CD边上的中线即为点B到直线CD的距离,求出BF即可.

解:取AC的中点E,连接DE、BE,取CD的中点F,连接BF
根据正方形的性质可知DE⊥AC,BE⊥AC,
则∠BED为二面角B-AC-D的平面角,则∠BED=90°
而DE=BE=2,则BD=4,而BC=DC=4
∴三角形BCD为等边三角形即BF⊥CD
∴点B到直线CD的距离为BF=2
故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD。

(I)证明:PQ⊥平面DCQ;
(II)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,中点。(1)求证:平面
(2)在线段上是否存在一点,使二面角的平面角的余弦值为?若存在,确定点位置;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分 )如图,在等腰直角中,为垂足.沿对折,连结,使得

(1)对折后,在线段上是否存在点,使?若存在,求出的长;若不存在,说明理由; 
(2)对折后,求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD,底面为直角梯形,AD=2,AB=BC=1,PA=
(Ⅰ)设MPD的中点,求证:平面PAB
(Ⅱ)若二面角B—PC—D的大小为150°,求此四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F分别是线段A1A,BC上的点.
(1) 若A1E=5,BF=10,求证:BE∥平面A1FD.
(2) 若BD⊥A1F,求三棱锥A1AB1F的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱柱中,平面,底面是边长为的正方形,侧棱.

(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)如图,直三棱柱中,AB⊥BC,D为AC的中点,
(1)求证:∥平面
(2)若四棱柱的体积为2,求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
四棱柱ABCD—A1B1C1D1的底面ABCD是正方形,侧棱底面ABCD,E、F分别是C1D1,C1B1的中点,G为CC1上任一点,EC与底面ABCD所成角的正切值是4。

(Ⅰ)确定点G的位置,使平面CEF,并说明理由;
(Ⅱ)求二面角F—CE—C1的余弦值。

查看答案和解析>>

同步练习册答案