精英家教网 > 高中数学 > 题目详情

【题目】 (1)已知正数ab满足ab=1,求证:a2b2

(2)设abc为△ABC的三条边,求证:a2b2c2<2(abbcca).

【答案】(1)见解析(2)见解析

【解析】

试题(1)利用配方将a2b2化为1-2ab,再根据基本不等式证不等式(2)根据三角形两边之和大于第三边得ac>b,即得abbc>b2,同理可得bcca>c2 ,abca>a2,三式相加即得结论

试题解析:证明:(1)a2b2=(ab)2-2ab=1-2ab≥1-2×=1-.

(2)因为abc是△ABC的三边,不妨设abc>0,则a>bc≥0,b>ac≥0,c>ab≥0.平方得:

a2>b2c2-2bcb2>a2c2-2acc2>a2b2-2ab

三式相加得:0>a2b2c2-2bc-2ac-2ab.

所以2ab+2bc+2ac>a2b2c2

a2b2c2<2(abbcca).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知全集为R,函数fx)=lg1x)的定义域为集合A,集合B{x|x2x60}

(Ⅰ)求AB

(Ⅱ)若C{x|m1xm+1}CARB)),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若恒成立,求实数的取值范围;

(Ⅱ)当取(I)中的最小值时,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从地去地有①或②两条路可走,并且汽车走路①堵车的概率为,汽车走路②堵车的概率为,若现在有两辆汽车走路①,有一辆汽车走路②,且这三辆车是否堵车相互之间没有影响,

(1)若这三辆汽车中恰有一辆汽车被堵的概率为,求走路②堵车的概率;

(2)在(1)的条件下,求这三辆汽车中被堵车辆的辆数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列,其中的公差不为0.设是数列的前n项和.若是数列的前3项,且

1)求数列的通项公式;

2)若数列为等差数列,求实数t

3)构造数列,…,,…,,….若该数列前n项和,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品,每售出一吨可获利万元,每积压一吨则亏损万元.某经销商统计出过去年里市场年需求量的频数分布表如下表所示.

年需求量(吨)

年数

(1)求过去年年需求量的平均值;(每个区间的年需求量用中间值代替)

(2)今年该经销商欲进货吨,以(单位:吨,)表示今年的年需求量,以(单位:万元)表示今年销售的利润,试将表示的函数解析式,并求今年的年利润不少于万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 ,则下列说法正确的是( )

A. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

B. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的单调性,并说明理由;

2)判断的奇偶性,并用定义证明;

3)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案