精英家教网 > 高中数学 > 题目详情
10.如果实数x,y满足约束条件$\left\{\begin{array}{l}{x+2y-4≥0}\\{x-y+2≥0}\\{x-2≤0}\end{array}\right.$,则2x-y的最小值为(  )
A.-2B.-1C.0D.3

分析 作出不等式组表示的可行域,以及直线y=2x,平移通过目标函数z=2x-y的几何意义,即可得到所求最小值.

解答 解:作出约束条件$\left\{\begin{array}{l}{x+2y-4≥0}\\{x-y+2≥0}\\{x-2≤0}\end{array}\right.$表示的可行域,
作出直线y=2x,平移直线,当过点A(0,2)时,
2x-y取最小值-2.
故选:A.

点评 本题考查线性目标函数在不等式组下的最值问题的解法,注意运用平移法,考查作图能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若3f(x-1)+2f(1-x)=2x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则$\frac{b}{a}$的值为(  )
A.$-\frac{3}{2}$或$-\frac{1}{2}$B.$-\frac{3}{2}$或$\frac{1}{2}$C.$-\frac{3}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若方程2sin(x+$\frac{π}{6}$)-a=0在区间[0,π]存在两个不等实根,则a的取值范围是(  )
A.[1,2]B.[1,2)C.[-1,1]D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知点C是圆心为O半径为1的半圆弧上动点(不含端点A和B),AB是直径,直线CD⊥平面ABC,CD=1.
(1)证明:AC⊥BD;
(2)求三棱锥D-ABC体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线($\sqrt{6}$sinθ)x+$\sqrt{3}$y-2=0的倾斜角为θ(θ≠0),则θ=$\frac{3π}{4}$(或135°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x∈R|ax2+2x+1=0},其中a∈R.
(1)1是A中的一个元素,用列举法表示A;
(2)若A中有且仅有一个元素,求实数a的组成的集合B;
(3)若A中至多有一个元素,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)定义在R上的函数,且对任意m,n有f(m+n)=f(m)•f(n),且当 x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x>0时,有  f(x)>1;
(2)判断 f(x)在R上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={3,5,6,8},B={4,5,7,8},则A∩B等于(  )
A.{5}B.{5,8}C.{3,7,8}D.{3,4,5,6,7,8}

查看答案和解析>>

同步练习册答案