精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以原点为极点,轴为极轴建立极坐标系,曲线的方程为为参数),曲线的极坐标方程为,若曲线相交于两点.

(1)求的值;

(2)求点两点的距离之积.

【答案】(1);(2).

【解析】

试题本题主要考查参数方程与普通方程的转化、极坐标方程与直角坐标方程的转化、点到直线的距离公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用将直线的极坐标方程转化为普通方程,再利用点到直线的距离公式计算,利用三角函数的有界性求最值;第二问,利用平方关系将曲线C的方程转化为普通方程,将直线的参数方程与曲线C的方程联立,消参,得到,即得到结论

试题解析:解析:(1) 曲线的普通方程为

的普通方程为,则的参数方程为:

代入

2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知函数

(Ⅰ)讨论函数的单调增区间;

(Ⅱ)是否存在负实数a,使,函数有最小值-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着高考制度的改革,某省即将实施“语数外+3”新高考的方案,2019年秋季入学的高一新生将面临从物理(物)、化学(化)、生物(生)、政治(政)、历史(历)、地理(地)六科中任选三科(共20种选法)作为自己将来高考“语数外+3”新高考方案中的“3”某市为了顺利地迎接新高考改革,在某高中200名学生中进行了“学生模拟选科数据”调查,每个学生只能从表格中的20种课程组合中选择一种学习模拟选课数据统计如下表:

为了解学生成绩与学生模拟选课情况之问的关系,用分层抽样的方法从这200名学生中抽取40人的样本进行分析

(1)从选择学习物理且学习化学的学生中随机抽取3人,求这3人中至少有2人要学习生物的概率:

(2)从选择学习物理且学习化学的学生中随机抽取3人,记这3人中要学习地理的人数为x,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设矩形所在平面与梯形所在平面相交于..

1)求证:

2)若,求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:

1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;

2)求频率分布直方图中的ab的值;

3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线,下面五个命题:

①对任意实数,直线和圆有公共点;

②存在实数,直线和圆相切;

③存在实数,直线和圆相离;

④对任意实数必存在实数,使得直线与和圆相切;

⑤对任意实数必存在实数,使得直线与和圆相切.

其中真命题的代号是______________________(写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若不等式解集为,求实数的值;

(2)在(1)的条件下,若不等式解集非空,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体中,分别为的中点,点在平面内,若直线与平面没有公共点,则线段长的最小值是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱柱ABC=A1B1C1的各棱长都是4EBC的中点,动点F在侧棱CC1上,且不与点C重合.

1)当CF=1时,求证:EF⊥A1C

2)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.

查看答案和解析>>

同步练习册答案