精英家教网 > 高中数学 > 题目详情
已知f(x)是R上的奇函数,且x∈(-∞,0)时,f(x)=-xlg(2-x),则f(x)=
-xlg(2-x),(x<0)
-xlg(2+x),(x≥0)
-xlg(2-x),(x<0)
-xlg(2+x),(x≥0)
分析:根据题意,由函数为奇函数,可得f(-x)=-f(x),再设x∈(0,+∞),结合x∈(-∞,0)时,f(x)的解析式可得f(x)在x∈(0,+∞)上的解析式,由奇函数的性质,可得f(0)=0,综合f(x)在(-∞,0)、(0,+∞)与x=0时的解析式,即可得答案.
解答:解:根据题意,f(x)是R上的奇函数,则有f(-x)=-f(x),
设x∈(0,+∞),-x∈(-∞,0),
则f(-x)=-(-x)lg[2-(-x)]=xlg(2+x),
又由有f(-x)=-f(x),则f(x)=-xlg(2+x),
当x=0时,由奇函数的性质可得f(0)=0,符合x∈(0,+∞)时,f(x)的解析式,
即当x∈(0,+∞)时,f(x)=-xlg(2+x),
则f(x)=
-xlg(2-x),(x<0)
-xlg(2+x),(x≥0)

故答案为
-xlg(2-x),(x<0)
-xlg(2+x),(x≥0)
点评:本题考查函数奇偶性的应用,解本题时,不要遗漏定义域中的0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知f(x)是R上的偶函数,f(2)=-1,若f(x)的图象向右平移1个单位长度,得到一个奇函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零点,比较f(a),f(-2),f(1.5)的大小,用小于符号连接为
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=
x

(1)求当x<0时,f(x)的表达式
(2)判断f(x)在区间(0,+∞)的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若g(-1)=2,则f(2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①命题“已知f(x)是R上的减函数,若a+b≥0,则f(a)+f(b)≤f(-a)+f(-b)”的逆否命题为真命题;
②若p或q为真命题,则p、q均为真命题;
③若命题p:?x∈R,x2-x+1<0,则?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要条件.
其中正确的是(  )

查看答案和解析>>

同步练习册答案