精英家教网 > 高中数学 > 题目详情
17.(1)(2$\frac{3}{5}$)0+2-2$•(2\frac{1}{4})^{\frac{1}{2}}+(\frac{25}{36})^{0.5}+\sqrt{(-2)^{2}}$
(2)(lg2)2+lg5•lg20+lg100.

分析 (1)利用指数幂的运算性质即可得出.
(2)利用对数的运算性质即可得出.

解答 解:(1)原式=1+$\frac{1}{4}×(\frac{3}{2})^{2×\frac{1}{2}}$+$(\frac{5}{6})^{2×0.5}$+2=1+$\frac{3}{8}$+$\frac{5}{6}$+2=4+$\frac{5}{24}$.
(2)原式=(lg2)2+lg5•(1+lg2)+2
=lg2(lg2+lg5)+lg5+2
=lg2+lg5+2
=3.

点评 本题考查了对数与指数幂的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.空间直角坐标系中,点M(1,-2,3)与点N(-1,2,3)的对称关系是(  )
A.关于z轴对称B.关于y轴对称C.关于原点对称D.关于平面xOy对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=a|x|(0<a<1)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设命题p:?x∈R,x2+1>0,则?p为(  )
A.?x0∈R,${x_0}^2+1≤0$B.?x0∈R,${x_0}^2+1>0$C.?x0∈R,${x_0}^2+1<0$D.?x0∈R,${x_0}^2+1≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且满足an=$\frac{1}{2}{S_n}$+1(n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=log2an,cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.衣柜里的樟脑丸会随着时间的挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:V=a•e-kt.若新丸经过50天后,体积变为$\frac{4}{9}$a,则一个新丸体积变为$\frac{8}{27}$a需经过的时间为(  )
A.125天B.100天C.50天D.75天

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)是R上的偶函数,且在(-∞,0)上为增函数,若x1<0,且x1+x2>0,则(  )
A.f(x1)=f(x2B.f(x1)>f(x2
C.f(x1)<f(x2D.无法比较f(x1)与f(x2)的大小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\frac{1}{ln(x-1)}$的定义域为(1,2)∪(2,+∞),值域为(-∞,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=$\frac{(x+3)(x+m)}{x}$为奇函数,则m=-3.

查看答案和解析>>

同步练习册答案