精英家教网 > 高中数学 > 题目详情
18.下列3个命题:
①已知随机变量X服从正态分布N(3,σ2),P(X≤6)=0.72,则P(X≤0)=0.28;
②函数$f(x)={(\frac{1}{3})^x}-\sqrt{x}$的所有零点存在区间是$(\frac{1}{3},\frac{1}{2})$.
③已知函数f(x)=cosxsin2x的图象关于(π,0)中心对称.
其中是真命题的个数是(  )
A.0B.1C.2D.3

分析 根据正态分布的对称性,可判断①;判断出函数零点的位置,可判断②;分析函数的对称性,可判断③.

解答 解:①已知随机变量X服从正态分布N(3,σ2),P(X≤6)=0.72,
则P(X≤0)=P(X≥6)=1-0.72=0.28,故正确;
②函数$f(x)={(\frac{1}{3})^x}-\sqrt{x}$为减函数,且f($\frac{1}{3}$)>0,f($\frac{1}{2}$)<0,且函数有且只有一个零点,
且在区间$(\frac{1}{3},\frac{1}{2})$上,故正确.
③函数f(x)=cosxsin2x满足,函数f(2π-x)=cos(2π-x)sin2(2π-x)=-cosxsin2x=-f(x),
故函数f(x)=cosxsin2x的图象关于(π,0)中心对称,故正确.
故选:D

点评 本题以命题的真假判断与应用为载体,考查了正态分布,函数的零点,函数的对称性等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x<-1或x>5},B={x|a≤x<a+4},且B?A,则实数a的取值范围为(  )
A.(-∞,-5)∪(5,+∞)B.(-∞,-5)∪[5,+∞)C.(-∞,-5]∪[5,+∞)D.(-∞,-5]∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.构造一个同时满足下面三个条件的函数实例:y=-|x|(写解析式).
①函数在(-∞,0)上单调递增;  
②函数具有奇偶性;  
③函数有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.方程mx2+2x+1=0至少有一个负根,则(  )
A.0<m<1或m<0B.0<m<1C.m<1D.m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.曲线y=x3-3x2在点(1,-2)处的切线方程为(  )
A.y=-3x+1B.y=-3x+5C.y=3x-5D.y=3x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于x的方程$\sqrt{1-{x}^{2}}$=kx+2有唯一实数解,则实数k的取值范围是(  )
A.$\left\{{±\sqrt{3}}\right\}$B.(-∞,-2)∪(2,+∞)C.(-2,2)D.$({-∞,-2})∪\left\{{±\sqrt{3}}\right\}∪({2,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\sqrt{\frac{x}{2-x}}$,则函数$g(x)=f(x+\frac{1}{2})+f(x-\frac{1}{2})$的定义域是[$\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线一条渐近线的斜率为$\sqrt{3}$,焦点是(-4,0)、(4,0),则双曲线方程为(  )
A.$\frac{x^2}{12}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1$C.$\frac{x^2}{10}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{10}=1$1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知下面四个命题:
①“若x2-x=0,则x=0或x=l”的逆否命题为“若x≠0且x≠1,则x2-x≠0”
②“x<1”是“x2-3x+2>0”的充分不必要条件
③命题P:存在x0∈R,使得x02+x0十1<0,则?p:任意x∈R,都有x2+x+1≥0
④若P且q为假命题,则p,q均为假命题
其中真命题个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案