精英家教网 > 高中数学 > 题目详情
6.方程mx2+2x+1=0至少有一个负根,则(  )
A.0<m<1或m<0B.0<m<1C.m<1D.m≤1

分析 容易看出,需讨论m:分m=0和m≠0,而m=0显然满足条件,m≠0时,根据一元二次方程mx2+2x+1=0至少一个负根,便可得到该方程有一正根,一负根和两负根两种情况,根据判别式的取值和韦达定理即可得到两个不等式组,解出m的范围即可.

解答 解:①m=0时,2x+1=0,∴x=$-\frac{1}{2}$,满足方程有一个负根;
②m≠0时,一元二次方程mx2+2x+1=0至少一个负根,则:
$\left\{\begin{array}{l}{△=4-4m≥0}\\{\frac{1}{m}<0}\end{array}\right.$,或$\left\{\begin{array}{l}{△=4-4m≥0}\\{-\frac{2}{m}<0}\\{\frac{1}{m}>0}\end{array}\right.$;
解得m<0,或0<m≤1;
综上得,m≤1.
故选D.

点评 考查分类讨论的思想,一元二次方程实根的情况和判别式取值的关系,以及韦达定理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2-4ρcos θ+3=0,θ∈[0,2π).
(1)求C1的直角坐标方程;
(2)曲线C2的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数).求C1与C2的公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设(x,y)在映射f下的像是(2x+y,x-2y),则在f下,像(3,4)的原像是(  )
A.(10,-5)B.(2,-1)C.(1,0)D.(3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.分别画出函数y=|x2-3x+2|,y=|x2-3|x|+2|的图象,并讨论它们的性质.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=ax2-lnx在[1,+∞)上是减函数,求实数a的取值范围是a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=1,a2=5,n≥2时,an+1=5an-6an-1
(1)证明:数列{an+1-3an}为等比数列,并求数列{an}的通项公式;
(2)试比较an与2n2+1的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列3个命题:
①已知随机变量X服从正态分布N(3,σ2),P(X≤6)=0.72,则P(X≤0)=0.28;
②函数$f(x)={(\frac{1}{3})^x}-\sqrt{x}$的所有零点存在区间是$(\frac{1}{3},\frac{1}{2})$.
③已知函数f(x)=cosxsin2x的图象关于(π,0)中心对称.
其中是真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知关于x的函数y=loga(2-ax)在[1,2]上是增函数,则a的取值范围是(  )
A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,棱长为1的正方体ABCD-A1B1C1D1中,P为线段A1B上的动点,则下列结论正确的序号是①②④.
①DC1⊥D1P
②平面D1A1P⊥平面A1AP
③∠APD1的最大值为90°
④AP+PD1的最小值为$\sqrt{2+\sqrt{2}}$.

查看答案和解析>>

同步练习册答案