精英家教网 > 高中数学 > 题目详情
8.已知下面四个命题:
①“若x2-x=0,则x=0或x=l”的逆否命题为“若x≠0且x≠1,则x2-x≠0”
②“x<1”是“x2-3x+2>0”的充分不必要条件
③命题P:存在x0∈R,使得x02+x0十1<0,则?p:任意x∈R,都有x2+x+1≥0
④若P且q为假命题,则p,q均为假命题
其中真命题个数为(  )
A.1B.2C.3D.4

分析 ①“或”的否定为“且”; ②x>2时,x2一3x+2>0也成立;③含有量词(任意、存在)的命题的否定既要换量词,又要否定结论;④命题p,q中只要有一个为假命题,“P且q”为假命题.

解答 对于①,交换条件和结论,并同时否定,而且“或”的否定为“且”,故①是真命题;
对于②x>2时,x2一3x+2>0也成立,所以“x<1”是“x2一3x+2>0”的充分不必要条件,故②是真命题;
对于③含有量词(任意、存在)的命题的否定既要换量词,又要否定结论,故③是真命题“;
对于④命题p,q中只要有一个为假命题,“P且q”为假命题,故④是假命题,
故答案为C.

点评 本题考查了命题的逆否关系,充分不必要条件的判定,含有量词的命题的否定及含有逻辑词”且“的命题的真值情况,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列3个命题:
①已知随机变量X服从正态分布N(3,σ2),P(X≤6)=0.72,则P(X≤0)=0.28;
②函数$f(x)={(\frac{1}{3})^x}-\sqrt{x}$的所有零点存在区间是$(\frac{1}{3},\frac{1}{2})$.
③已知函数f(x)=cosxsin2x的图象关于(π,0)中心对称.
其中是真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知$\overrightarrow a=({4,2})$,$\overrightarrow b=({6,y})$,且$\overrightarrow a∥\overrightarrow b$,求y.
(2)已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(λ,3),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,求λ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,棱长为1的正方体ABCD-A1B1C1D1中,P为线段A1B上的动点,则下列结论正确的序号是①②④.
①DC1⊥D1P
②平面D1A1P⊥平面A1AP
③∠APD1的最大值为90°
④AP+PD1的最小值为$\sqrt{2+\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程x=l+sinx的解的个数有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系x0y中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过(0,1),且离心率e=$\frac{{\sqrt{2}}}{2}$,
(1)求椭圆方程.
(2)经过点(0,$\sqrt{2})$且斜率k的直线l与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)有两个不同的交点P和Q.
①求k的取值范围.
②设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$与$\overrightarrow{AB}$共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x|x2-5x-6=0},B={x|y=log2(2-x)},则A∩(∁RB)=(  )
A.{2,3}B.{-1,6}C.{3}D.{6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.求函数y=log$\frac{1}{3}$(x2-4x+3)的单调区间.减区间为(3,+∞);增区间为(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定点A(a,3)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为(0,$\frac{9}{4}$).

查看答案和解析>>

同步练习册答案