精英家教网 > 高中数学 > 题目详情
13.如图,已知圆O的两弦AB和CD相交于点E,FG是圆O的切线,G为切点,EF=FG.
求证:(Ⅰ)∠DEF=∠EAD;
(Ⅱ)EF∥CB.

分析 (Ⅰ)利用切割线定理,结合EF=FG,证明△FED∽△EAF,可得∠DEF=∠EAD;
(Ⅱ)证明∠FED=∠BCD,即可证明EF∥CB

解答 证明:(Ⅰ)由切割线定理得FG2=FA•FD.
又EF=FG,所以EF2=FA•FD,即$\frac{EF}{FA}=\frac{FD}{EF}$.
因为∠EFA=∠DFE,所以△FED∽△EAF,
所以∠DEF=∠EAD.
(Ⅱ)由(Ⅰ)得∠DEF=∠EAD,
因为∠FAE=∠DAB=∠DCB,
所以∠FED=∠BCD,所以EF∥CB.

点评 本题考查切割线定理,考查三角形相似的判定与性质,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.解答下列问题:
(1)设α为第三象限角,求$\frac{|sinα|}{sinα}$-$\frac{2cosα}{|cosα|}$的值;
(2)已知tan(-α)=2,求$\frac{sin(α-720°)+cos(180°+α)}{sin(-α)-cos(-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点P(a,b)关于直线l的对称点为P′(b+1,a-1),则圆C:x2+y2-6x-2y=0关于直线l对称的圆C′的方程为(x-2)2+(y-2)2=10;圆C与圆C′的公共弦的长度为$\sqrt{38}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ln(ex+a)(a为常数)是实数R上的奇函数,若关于x的方程$\frac{lnx}{f(x)}$=x2-2ex+m的根的个数为2,则实数m的范围为(  )
A.m≥e2+$\frac{1}{e}$B.m>$\frac{1}{e}$C.m<e2+$\frac{1}{e}$D.m≤$\frac{1+e}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x∈[1,10]执行如图所示的流程图,则输出的x不小于63的概率为(  )
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{2}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$2\sqrt{2}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在R上的函数f(x)满足f(x)=$\frac{f′(1)}{2}$e2x-2+x2-2f(0)x,g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-a)x+a.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数g(x)的单调区间;
(Ⅲ) 如果s、t、r满足|s-r|≤|t-r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较$\frac{e}{x}$和ex-1+a哪个更靠近lnx,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=mx-alnx-m,g(x)=$\frac{x}{{e}^{x-1}}$,其中m,a均为实数.
(Ⅰ)求函数g(x)的极值;
(Ⅱ)设m=1,a<0,若对任意的x1、x2∈[3,4](x1≠x2),|f(x2)-f(x1)|<|$\frac{1}{g({x}_{2})}$-$\frac{1}{g({x}_{1})}$|恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A,B,C三点不重合,则“$\overrightarrow{AB}=\overrightarrow{BC}$”是“A,B,C三点共线”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案