分析 (Ⅰ)对函数g(x)求导,得到g'(x)=0,得到极值点,求出极值.
(Ⅱ)不妨设x2>x1,则$|f({x_2})-f({x_1})|<|{\frac{1}{{g({x_2})}}-\frac{1}{{g({x_1})}}}|$等价于:f(x2)-f(x1)<h(x2)-h(x1),即f(x2)-h(x2)<f(x1)-h(x1),分离参数,利用导数求最值求出参数范围即可.
解答 解:(Ⅰ)$g'(x)=\frac{1-x}{{{e^{x-1}}}}$,令g'(x)=0,得x=1,列表如下:
| x | (-∞,1) | 1 | (1,+∞) |
| g'(x) | + | 0 | - |
| g(x) | ↗ | 极大值 | ↘ |
点评 本题主要考查了利用导数求函数极值和利用导数求参数范围,属于中档题型,在高考中经常涉及.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{{5\sqrt{3}}}{3}$ | D. | $\frac{{3\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|3<x≤5} | B. | {x|x≥5} | C. | {x|x<3} | D. | R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 1-$\frac{{\sqrt{13}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com