精英家教网 > 高中数学 > 题目详情
7.直线l:8x-6y-3=0被圆O:x2+y2-2x+a=0所截得弦的长度为$\sqrt{3}$,则实数a的值是(  )
A.-1B.0C.1D.1-$\frac{{\sqrt{13}}}{2}$

分析 把圆的方程化为标准形式,求出圆心和半径,利用点到直线的距离公式求出弦心距,再利用弦长公式求得a的值.

解答 解:圆O:x2+y2-2x+a=0,即(x-1)2+y2 +a=1-a,∴a<1,圆心(1,0)、半径为$\sqrt{1-a}$.
又弦心距d=$\frac{|8-0-3|}{\sqrt{64+36}}$=$\frac{1}{2}$,∴$\frac{1}{4}$+${(\frac{\sqrt{3}}{2})}^{2}$=r2=1-a,求得a=0,
故选:B.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如果复数$\frac{2-bi}{3+i}$(b∈R)的实部与虚部互为相反数,则b=(  )
A.0B.1C.-lD.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$2\sqrt{2}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy 中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cos2α\\ y=\frac{1}{2}cosα\end{array}$(α为参数),在极坐标系中,曲线C2的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$
(1)求曲线C2的普通方程
(2)设c1与c2相交于A,B两点,求|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=mx-alnx-m,g(x)=$\frac{x}{{e}^{x-1}}$,其中m,a均为实数.
(Ⅰ)求函数g(x)的极值;
(Ⅱ)设m=1,a<0,若对任意的x1、x2∈[3,4](x1≠x2),|f(x2)-f(x1)|<|$\frac{1}{g({x}_{2})}$-$\frac{1}{g({x}_{1})}$|恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设i是虚数单位,a为实数,复数z=$\frac{1+ai}{i}$为纯虚数,则z的共轭复数为(  )
A.-iB.iC.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个袋中有4个大小质地相同的小球,其中红球1个,白球2个(分别标号为1,2),黑球1个,现从袋中有放回的取球,每次随机取1个.
(1)求连续取两次都没取到白球的概率;
(2)若取1个红球记2分,取1个白球记1分,取1个回球记0分,连续取两次球,求分数之和为2或3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-x-2≤0,x∈Z},集合B={0,2,4},则A∪B等于(  )
A.{-1,0,1,2,4}B.{-1,0,2,4}C.{0,2,4}D.{0,1,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右两个焦点分别为F1、F2,点E是椭圆C上的动点,且△EF1F2的周长为2+2$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过右焦点F2且斜率为k(k≠0)的直线l交椭圆C与A,B两点,弦AB的垂直平分线与x交于x轴相交于点D,试问椭圆C上是否存在点E,使得四边形ADBE为菱形?若存在,求出点E到y轴的距离;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案