分析 由已知利用余弦定理可求BD,进而利用三角形面积公式可求S△ABD和S△BCD,从而求得四边形的面积.
解答
解:∵∠ABC=∠C=120°,AB=4,BC=CD=2,
∴在△BCD中,BD=$\sqrt{B{C}^{2}+C{D}^{2}-2BC•CD•cosC}$=$\sqrt{4+4-2×2×2×(-\frac{1}{2})}$=2$\sqrt{3}$,
∴S△ABD=$\frac{1}{2}$AB•BD•sin(120°-30°)=$\frac{1}{2}×4×2\sqrt{3}$=4$\sqrt{3}$,
S△BCD=$\frac{1}{2}BC•CD•sin120°$=$\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴四边形的面积S=S△ABD+S△BCD=4$\sqrt{3}+\sqrt{3}$=5$\sqrt{3}$.
故答案为:$5\sqrt{3}$.
点评 本题主要考查了余弦定理,三角形面积公式在解三角形中的综合应用,考查了数形结合思想和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com