精英家教网 > 高中数学 > 题目详情
10.下列函数中,既是偶函数,又在(0,1)上为减函数的是(  )
A.y=x${\;}^{\frac{1}{2}}}$B.y=log3xC.y=cosxD.y=|x|

分析 逐一检验各个选项中的函数,是否满足既是偶函数,又在(0,1)上为减函数,从而得出结论.

解答 解:由于y=x${\;}^{\frac{1}{2}}}$不是偶函数,故排除A;
由于y=log3x不是偶函数,故排除B;
由于y=|x|在(0,1)上是增函数,不是减函数,故排除D;
由于y=cosx既是偶函数,又在(0,1)上为减函数,
故选:C.

点评 本题主要考查函数的奇偶性、单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.有甲、乙两个班级进行数学考试,按照大于或等于90分为优秀,90分以下为非优秀统计成绩后,得到如表的列联表.
优秀非优秀总计
甲班10
乙班30
合计100
已知在全部100人中抽到随机抽取1人为优秀的概率为$\frac{3}{10}$.
(1)请完成如表的列联表;
(2)根据列联表的数据,有多大的把握认为“成绩与班级有关系“?
(3)按分层抽样的方法,从优秀学生中抽出6名组成一个样本,再从样本中抽出2名学生,求恰好有1个学生在甲班的概率.
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d.
下面的临界值表供参考:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{x}{{ln({ax})+2}}$(a≠0).
(1)若a=2,求曲线y=f(x)在点(${\frac{1}{2}$,f(${\frac{1}{2}}$))处的切线方程;
(2)当x∈[2,4]时,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F,直线x=$\frac{a^2}{c}$与其渐近线交于A、B两点,且△ABF为直角三角形,则双曲线的离心率是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{lnx+1}{e^x}$,(e=2.71828…是自然对数的底数).
(1)求f(x)的单调区间;
(2)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知tanα=-$\frac{4}{3}$.
(1)求tan(α+$\frac{π}{4}$)的值;   
(2)求$\frac{{{{cos}^2}α+sin2α}}{1+cos2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等比数列的各项都为正数,且当n≥3时,a4a2n-4=102n,则数列lga1,2lga2,22lga3,23lga4,…,2n-1lgan,…的前n项和Sn等于(  )
A.n•2nB.(n-1)•2n-1-1C.(n-1)•2n+1D.2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设矩阵A=$(\begin{array}{l}{0}&{1}&{0}\\{1}&{0}&{-1}\\{0}&{1}&{0}\end{array})$,若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵,求X.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x+1)e2x,g(x)=aln(x+1)+$\frac{3}{4}$x2+(3-a)x+a(a∈R).
(1)当a=9,求函数y=g(x)的单调区间;
(2)若f(x)≥g(x)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案