分析 由X-XA2-AX+AXA2=E,将其转化成(E-A)X(E-A2)=E,由丨E-A丨=1,丨E-A2丨=-1,E-A和E-A2可逆,分别求得其逆矩阵,X=(E-A)-1(E-A2)-1,即可求得X.
解答 解:X-XA2-AX+AXA2=E,
∴X(E-A2)-AX(E-A2)=E,
∴(E-A)X(E-A2)=E,
E-A=$[\begin{array}{l}{1}&{-1}&{0}\\{-1}&{1}&{1}\\{0}&{-1}&{1}\end{array}]$,E-A2=$[\begin{array}{l}{0}&{0}&{1}\\{0}&{1}&{0}\\{-1}&{0}&{2}\end{array}]$,
丨E-A丨=1,丨E-A2丨=-1,
∴E-A和E-A2可逆,
(E-A)-1=$\frac{1}{丨E-A丨}$(E-A)*=$[\begin{array}{l}{2}&{1}&{-1}\\{1}&{1}&{-1}\\{1}&{1}&{0}\end{array}]$,
(E-A2)-1=$\frac{1}{丨E-{A}^{2}丨}$(E-A2)*=$[\begin{array}{l}{2}&{0}&{-1}\\{0}&{1}&{0}\\{1}&{0}&{0}\end{array}]$,
∴X=(E-A)-1(E-A2)-1=$[\begin{array}{l}{2}&{1}&{-1}\\{1}&{1}&{-1}\\{1}&{1}&{0}\end{array}]$$[\begin{array}{l}{2}&{0}&{-1}\\{0}&{1}&{0}\\{1}&{0}&{0}\end{array}]$=$[\begin{array}{l}{3}&{1}&{-2}\\{1}&{1}&{-1}\\{2}&{1}&{-1}\end{array}]$,
∴X=$[\begin{array}{l}{3}&{1}&{-2}\\{1}&{1}&{-1}\\{2}&{1}&{-1}\end{array}]$.
点评 本题考查矩阵的变换,考查矩阵可逆的充要条件及求逆矩阵的方法,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x${\;}^{\frac{1}{2}}}$ | B. | y=log3x | C. | y=cosx | D. | y=|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com