精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=(x+1)e2x,g(x)=aln(x+1)+$\frac{3}{4}$x2+(3-a)x+a(a∈R).
(1)当a=9,求函数y=g(x)的单调区间;
(2)若f(x)≥g(x)恒成立,求a的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)令h(x)=(x+1)e2x-aln(x+1)-$\frac{3}{4}$x2-(3-a)x-a,通过讨论a的范围,求出函数的导数,结合函数的单调性求出a的具体范围即可.

解答 解:(1)a=9时,g(x)=9ln(x+1)+$\frac{3}{4}$x2-6x+9,
g′(x)=$\frac{3{(x}^{2}-3x+2)}{2(x+1)}$,(x>-1),
由g′(x)>0,解得:-1<x<1或x>2,
由g′(x)<0,解得:1<x<2,
∴g(x)在(-1,1)递增,在(1,2)递减,在(2,+∞)递增;
(2)由f(x)≥g(x),得:(x+1)e2x≥aln(x+1)+$\frac{3}{4}$x2+(3-a)x+a,
令h(x)=(x+1)e2x-aln(x+1)-$\frac{3}{4}$x2-(3-a)x-a,
①a≥0时,h′(x)=(2x+3)e2x-$\frac{a}{x+1}$-$\frac{3}{2}$x+(a-3),
1°,x=0时,h′(x)=0,
2°,x∈(-1,0)时,h′(x)<(2x+3)e2x-$\frac{a}{x+1}$-2x+(a-3)=(2x+3)(e2x-1)+a(1-$\frac{1}{x+1}$)<0,
3°,x∈(0,+∞)时,h′(x)>(2x+3)e2x-$\frac{a}{x+1}$-2x+(a-3)=(2x+3)(e2x-1)+a(1-$\frac{1}{x+1}$)>0,
∴h(x)在(-1,0)递减,在(0,+∞)递增,
∴h(x)的最小值是h(0)=1-a,
则$\left\{\begin{array}{l}{a≥0}\\{1-a≥0}\end{array}\right.$,解得:0≤a≤1;
②a<0时,x∈(-1,0)时,f(x)∈(0,1),即f(x)<1,
而对于函数g(x),不妨令x=-1+${e}^{\frac{4-2a}{a}}$,
有g(x)=aln(x+1)+$\frac{3}{4}$x2+(3-a)x+a>aln(x+1)+2a-3=aln(-1+${e}^{\frac{4-2a}{a}}$+1)+2a-3=1,
故在(-1,0)内存在-1+${e}^{\frac{4-2a}{a}}$,使得g(x)>f(x),f(x)≥g(x)b不恒成立,
综上,a的范围是[0,1].

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列函数中,既是偶函数,又在(0,1)上为减函数的是(  )
A.y=x${\;}^{\frac{1}{2}}}$B.y=log3xC.y=cosxD.y=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若2<a<3,5<b<6,f(x)=logax+$\frac{3}{4}$x-b有正整数零点x0,则x0=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=(2x2-4ax)lnx,a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对任意x∈[1,+∞),f(x)+x2-a>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{6}$x3-ax(lnx-1)+$\frac{f′(1)}{2}x$(a∈R且a≠0).
(Ⅰ)设函数g(x)=$\frac{1}{6}$x3+$\frac{x}{2}$-f(x),求函数g(x)的单调递增区间;
(Ⅱ)当a>0时,设函数h(x)=f′(x)-$\frac{1}{2}$;
①若h(x)≥0恒成立,求实数a的取值范围;
②证明:ln(1•2•3…n)2e<12+22+32+…+n2(n∈N*,e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.将下列参数方程化成普通方程:
(1)$\left\{\begin{array}{l}{x=\frac{t+1}{t-1}}\\{y=\frac{2t}{{t}^{3}-1}}\end{array}\right.$;

(2)$\left\{\begin{array}{l}{x=3+15cosθ}\\{y=2+15sinθ}\end{array}\right.$(0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若¬p是¬q的充分不必要条件,则实数a的取值范围为[-1,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.作出下列各组函数的图象.并观察它们之间的关系.
①y=$\frac{1}{x}$    ②y=$\frac{1}{x+1}$    ③y=$\frac{1}{x}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.二项式(ax-$\frac{\sqrt{3}}{6}$)3(a>0)的展开式的第二项的系数为-$\frac{\sqrt{3}}{2}$,则${∫}_{0}^{a}$($\sqrt{2x-{x}^{2}}$-x)dx的值为(  )
A.$\frac{π-2}{4}$B.$\frac{π-2}{2}$C.$\frac{π-1}{2}$D.$\frac{π-1}{4}$

查看答案和解析>>

同步练习册答案