【题目】某市电视台为了宣传,举办问答活动,随机对该市15至65岁的人群进行抽样,频率分布直方图及回答问题统计结果如表所示:
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取3人颁发幸运奖,求:所抽取的人中第3组至少有1人获得幸运奖的概率.
【答案】(1);(2)第2,3,4组每组应各依次抽取 人, 人, 人;(3).
【解析】
试题分析:(1)根据第一组的答对的人数和概率,计算得第一组的人数,根据频率可计算的总人数为,再根据频率分布直方图可计算得;(2)三组答对人数比为,故分别抽取人;(3)利用列举法求得概率为.
试题解析:
(1)第1组人数,所以,
第2组人数,所以,
第3组人数,所以,
第4组人数,所以,
第5组人数,所以,
(2)第2,3,4组回答正确的人的比为,所以第2,3,4组每组应各依次抽取2人,3人,1人.
(3)记抽取的6人中,第2组的记为,第3组的记为,第4组的记为,则从6名学生中任取3名的所有可能的情况有20种,它们是:
,
其中记“第3组至少有1人”为事件,则的对立事件是“第3组的没有选到”,其基本事件个数是1个,即,故所求概率为.
科目:高中数学 来源: 题型:
【题目】下列变量中,不是随机变量的是( )
A.一射击手射击一次命中的环数
B.标准状态下,水沸腾时的温度
C.抛掷两颗骰子,所得点数之和
D.某电话总机在时间区间(0,T)内收到的呼叫次数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
(1)若x=2是函数f(x)的极值点,求在(1,h(1))处的切线方程;
(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2﹣3x+2≤0},集合B={y|y=x2﹣2x+a},集合C={x|x2﹣ax﹣4≤0},命题p:A∩B≠,命题q:AC.
(1)若命题p为假命题,求实数a的取值范围.
(2)若命题p∧q为真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区.已知,,,曲线是以点为顶点的且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在,上,且一个顶点落在曲线段上,问矩形的两边长分别为多少时使矩形工业园区的用地面积最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com