精英家教网 > 高中数学 > 题目详情
11.已知△ABC为等腰直角三角形,且CA=CB=3$\sqrt{2}$,M,N两点在线段AB上运动,且MN=2,则$\overrightarrow{CM}$•$\overrightarrow{CN}$的取值范围为(  )
A.[12,24]B.[8,12]C.[8,24]D.[8,17]

分析 如图所示,设M(x,y),N(x+$\sqrt{2}$,y-$\sqrt{2}$),0≤x≤2$\sqrt{2}$.直线AB的方程为:x+y=3$\sqrt{2}$.可得$\overrightarrow{CM}$•$\overrightarrow{CN}$=$2(x-\sqrt{2})^{2}$+8,再利用二次函数的单调性即可得出.

解答 解:如图所示,
设M(x,y),N(x+$\sqrt{2}$,y-$\sqrt{2}$),0≤x≤2$\sqrt{2}$.
直线AB的方程为:x+y=3$\sqrt{2}$.
则$\overrightarrow{CM}$•$\overrightarrow{CN}$=$x(x+\sqrt{2})$+y$(y-\sqrt{2})$
=${x}^{2}+\sqrt{2}x$+$(3\sqrt{2}-x)$$(2\sqrt{2}-x)$
=2x2-4$\sqrt{2}$x+12
=$2(x-\sqrt{2})^{2}$+8,
∵0≤x≤2$\sqrt{2}$.
∴当x=$\sqrt{2}$时,$\overrightarrow{CM}$•$\overrightarrow{CN}$有最小值8.
当x=2$\sqrt{2}$或0时,$\overrightarrow{CM}$•$\overrightarrow{CN}$有最大值12.
∴$\overrightarrow{CM}$•$\overrightarrow{CN}$的取值范围为[8,12].
故选:B.

点评 本题考查了直线的方程、数量积运算性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx+mx2(m∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0,f′(x)为f(x)的导函数,求证:f′($\frac{a+b}{2}$)<$\frac{f(a)-f(b)}{a-b}$<f′(b);
(Ⅲ)求证:$\frac{2}{3}+\frac{2}{5}+\frac{2}{7}+…+\frac{2}{2n+1}$<ln(n+1)<1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,AB=AC,以B为圆心,BC为半径画弧,交AC于点D,求证:BC2=AC•CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在矩形ABCD中,AB=3$\sqrt{3}$,BC=3.沿对角线将△BCD折起,使点C移到C点,且C点在平面ABD的射影O恰在AB上.
(1)求证:BC⊥平面ACD;
(2)求直线AB与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若log4x=3,则log16x等于(  )
A.$\frac{3}{2}$B.9C.$\sqrt{3}$D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.二次函数f(x)=ax2+bx+c(a,b,c∈Z)的图象向左平移1个单位后关于y轴对称.方程f(x)-x=0的两根为α、β,且0<α<2<β<4,β-α=$\sqrt{5}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设函数g(x)=x3-3x2-6x+m,对?x1∈[-2,2],?x2∈[-2,2],都有f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设二次函数f(x)=x2+bx+c(b,c∈R),f(1)=0,且1≤x≤3时,f(x)≤0恒成立,f(x)是区间[2,+∞)是增函数.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若|f(m)|=|f(n)|,且m<n<2,u=m+n,求u的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A={(x,y)|ax+y=1},B={(x,y)|x+ay=1},C={(x,y)|x2+y2=1}.
(1)求(A∪B)∩C的元素个数为2的充要条件;
(2)求(A∪B)∩C的元素个数为3的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义在R上的函数(x)的图象关于原点对称,且x>0时,f(x)=x(1+x)+1,求函数f(x)解析式.

查看答案和解析>>

同步练习册答案