精英家教网 > 高中数学 > 题目详情
tanα=2,则
1
sin2α
的值等于(  )
分析:将所求式子的分子“1”利用同角三角函数间的基本关系化为sin2α+cos2α,分母利用二倍角的正弦函数公式化简,然后分子分母同时除以cos2α,利用同角三角函数间的基本关系弦化切后,将tanα的值代入计算,即可求出值.
解答:解:∵tanα=2,
1
sin2α
=
sin2α+cos2α
2sinαcosα
=
tan2α+1
2tanα
=
22+1
2×2
=
5
4

故选B
点评:此题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,熟练掌握基本关系及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列结论:
①已知命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题;
②函数y=
|x|
x2+1
的最小值为
1
2
且它的图象关于y轴对称;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sinAcosB=sinC,则△ABC中是直角三角形.
⑤若tanθ=2,则sin2θ=
4
5

其中正确命题的序号为
①④⑤
①④⑤
.(把你认为正确的命题序号填在横线处)

查看答案和解析>>

科目:高中数学 来源: 题型:

若tanα=2,则
sin2α-cos2α
1+cos2α
=(  )
A、
7
6
B、
3
2
C、
1
6
D、-
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①若tanθ=2,则sin2θ=
4
5

②函数f(x)=lg(x+
1+x2
)
是奇函数;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sinAcosB=sinC,则△ABC中是直角三角形.
其中所有真命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

若tanα=2,则
2sinα-cosα
sinα+cosα
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若tanα=2,则
3sinα-2cosα
-5sinα+6cosα
=
-1
-1
,sinαcosα+cos2α=
-
1
5
-
1
5

查看答案和解析>>

同步练习册答案