【题目】在平面直角坐标系
中,椭圆
的离心率为
,过椭圆右焦点
作两条互相垂直的弦
与
.当直线
的斜率为0时,
.
(1)求椭圆的方程;
(2)试探究
是否为定值?若是,证明你的结论;若不是,请说明理由.
【答案】(1)
(2)
是定值;证明见解析
【解析】
(1)根据
,当直线
的斜率为0时,
.即
求解.
(2)分两种情况讨论,①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,易得
.
②当两弦所在直线的斜率均存在且不为0时,设直线
的方程为
,直线
的方程为
.将直线
方程代入椭圆方程中并整理
,再利用弦长公式分别求解
即可.
(1)由题意知
,当直线
的斜率为0时,
.
.
又
,
解得
,
,
所以椭圆方程为
.
(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,
由题意知
.
②当两弦所在直线的斜率均存在且不为0时,设直线
的方程为
,
,
,
则直线
的方程为
.
将直线
方程代入椭圆方程中并整理得
,
则
,
,
所以![]()
.
同理,
.
所以
,
故
是定值.
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的四个顶点围成的四边形的面积为
,原点到直线
的距离为
.
(1)求椭圆
的方程;
(2)已知定点
,是否存在过
的直线
,使
与椭圆
交于
,
两点,且以
为直径的圆过椭圆
的左顶点?若存在,求出
的方程:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利润增长 | 6.0 | 7.0 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
(1)请用最小二乘法求出
关于
的回归直线方程(结果保留两位小数);
(2)现从2012—2018年这7年中抽出三年进行调查,记
年利润增长-投资金额,设这三年中
(万元)的年份数为
,求随机变量
的分布列与期望.
参考公式:
,
.
参考数据:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长途车站P与地铁站O的距离为
千米,从地铁站O出发有两条道路l1,l2,经测量,l1,l2的夹角为45°,OP与l1的夹角
满足tan
=
(其中0<θ<
),现要经过P修条直路分别与道路l1,l2交汇于A,B两点,并在A,B处设立公共自行车停放点.
![]()
(1)已知修建道路PA,PB的单位造价分别为2m元/千米和m元/千米,若两段道路的总造价相等,求此时点A,B之间的距离;
(2)考虑环境因素,需要对OA,OB段道路进行翻修,OA,OB段的翻修单价分别为n元/千米和
n元/千米,要使两段道路的翻修总价最少,试确定A,B点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的方程为:(x-3)2+(y-2)2=r2(r>0),若直线3x+y=3上存在一点P,在圆C上总存在不同的两点M,N,使得点M是线段PN的中点,则圆C的半径r的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心为坐标原点,焦点在
轴上,离心率
,以椭圆
的长轴和短轴为对角线的四边形的周长为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若经过点
的直线
交椭圆
于
两点,是否存在直线
,使得
到直线
的距离
满足
恒成立,若存在,请求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com