·ÖÎö £¨1£©ÇóµÃÅ×ÎïÏß×¼Ïß·½³ÌÔòc=1£¬ÔòÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©£¨i£©½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏÖ±ÏßµÄбÂʹ«Ê½£¬¿ÉµÃm=-2k£¬½ø¶øµÃµ½Ö±Ïߺã¹ý¶¨µã£¨2£¬0£©£»
£¨ii£©ÀûÓÃÏÒ³¤¹«Ê½ÇóµÃØMNØ£¬ÓÉ|MG|=|NG|£¬GÔÚÏß¶ÎMNµÄÖд¹ÏßÉÏ£¬Ö±ÏßGDµÄ·½³Ì£¬ÇóµÃm2=$\frac{{k}^{2}{t}^{2}}{£¨2{k}^{2}+1£©^{2}}$£¬´úÈëÀûÓûù±¾²»µÈʽµÄÐÔÖÊ£¬¼´¿ÉÇóµÃʵÊýmµÄȡֵ·¶Î§£»
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$£¬Ôòa=$\sqrt{2}$c£¬
Å×ÎïÏßy2=-4x×¼Ïß·½³Ìx=1£¬Ôòc=1£¬
¡àa=$\sqrt{2}$£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+2k2£©x2+4ktx+2t2-2=0£¬
Ôò¡÷=16k2t2-8£¨1+2k2£©£¨t2-1£©£¾0£¬
Ôòx1+x2=-$\frac{4kt}{1+2{k}^{2}}$£¬x1x2=$\frac{2{t}^{2}-2}{1+2{k}^{2}}$£¬
£¨i£©Ö¤Ã÷£º¡ßk1+k2=$\frac{{y}_{1}}{{x}_{1}-1}$+$\frac{{y}_{2}}{{x}_{2}-1}$=$\frac{k{x}_{1}+t}{{x}_{1}-1}$+$\frac{k{x}_{2}+t}{{x}_{2}-1}$=0£¬
¡à2kx1x2-2t+£¨t-k£©£¨x1+x2£©=0£¬
´úÈëΤ´ï¶¨Àí£¬¿ÉµÃ2k•$\frac{2{t}^{2}-2}{1+2{k}^{2}}$-2t+£¨t-k£©£¨-$\frac{4kt}{1+2{k}^{2}}$£©=0£¬
»¯¼ò¿ÉµÃt=-2k£¬
ÔòÖ±Ïߵķ½³ÌΪy=kx-2k£¬¼´y=k£¨x-2£©£¬
¹ÊÖ±Ïßlºã¹ý¶¨µã£¨2£¬0£©£»
£¨ii£©¼ÙÉè´æÔÚµãG£¨m£¬0£©Âú×ãÌâÒâÌâÒ⣬ØMNØ=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$£¬
ÔòØMNØ=$\frac{2\sqrt{2}\sqrt{{k}^{2}+1}•\sqrt{2{k}^{2}+1-{t}^{2}}}{2{k}^{2}+1}$=2£¬
»¯¼òÕûÀíµÃt2=$\frac{2{k}^{2}+1}{2£¨{k}^{2}+1£©}$£¬
´ËʱÅбðʽ¡÷=8£¨2k2+1-t2£©=8[2k2+1-$\frac{2{k}^{2}+1}{2£¨{k}^{2}+1£©}$]£¾0ºã³ÉÁ¢£¬
¡àk¡ÊR£¬
ÉèMNÖеãD£¨x0£¬y0£©£¬Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2kt}{2{k}^{2}+1}$£¬y0=$\frac{t}{2{k}^{2}+1}$£¬
ÓÉ|MG|=|NG|£¬ÔòGÔÚÏß¶ÎMNµÄÖд¹ÏßÉÏ£¬
µ±k¡Ù0£¬Ö±ÏßGDµÄ·½³ÌΪy-$\frac{t}{2{k}^{2}+1}$=-$\frac{1}{k}$£¨x+$\frac{2kt}{2{k}^{2}+1}$£©£¬µ±y=0£¬¿ÉµÃm=-$\frac{kt}{2{k}^{2}+1}$£¬
Ôòm2=$\frac{{k}^{2}{t}^{2}}{£¨2{k}^{2}+1£©^{2}}$£¬
Ôòm2=$\frac{{k}^{2}}{2{£¨k}^{2}+1£©£¨2{k}^{2}+1£©}$=$\frac{1}{2£¨2{k}^{2}+\frac{1}{{k}^{2}}+3£©}$£¬
¹Êm2¡Ü$\frac{1}{2£¨2\sqrt{2{k}^{2}•\frac{1}{{k}^{2}}+3}£©}$=$\frac{1}{2£¨2\sqrt{2}+3£©}$=$\frac{1}{£¨\sqrt{2}£©^{2}£¨\sqrt{2}+1£©^{2}}$£¬
¼´ØmØ¡Ü$\frac{2-\sqrt{2}}{2}$£¬ÇÒm¡Ù0£¬
¡àmµÄȡֵ·¶Î§Îª[-$\frac{2-\sqrt{2}}{2}$£©¡È£¨0£¬$\frac{2-\sqrt{2}}{2}$]£¬
µ±k=0ʱ£¬m=0£¬
×ÛÉÏ£¬mµÄȡֵ·¶Î§Îª[-$\frac{2-\sqrt{2}}{2}$£¬$\frac{2-\sqrt{2}}{2}$]£®![]()
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïߺã¹ý¶¨µãµÄÇ󷨣¬×¢ÒâÔËÓÃÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖ±ÏßµÄбÂʹ«Ê½£¬×¢ÒâÔËÓõȱÈÊýÁеÄÖÐÏîµÄÐÔÖʺÍΤ´ï¶¨Àí¼°ÏÒ³¤¹«Ê½£¬Öеã×ø±ê¹«Ê½£¬»ù±¾²»µÈʽµÄ×ÛºÏÓ¦Ó㬿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 0 | B£® | 2 | C£® | 20 | D£® | 4034 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | P¡ÄQ | B£® | £¨©VP£©¡ÄQ | C£® | £¨©VP£©¡Ä£¨©VQ£© | D£® | P¡Ä£¨©VQ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{4}$ | B£® | $\frac{7}{16}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{9}{16}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com