15£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬ËüµÄÒ»¸ö½¹µãÔÚÅ×ÎïÏßy2=-4xµÄ×¼ÏßÉÏ£®µãEΪÍÖÔ²CµÄÓÒ½¹µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl£ºy=kx+tÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£®
£¨i£©Èôt¡Ù0£¬Ö±ÏßEMÓëENµÄбÂÊ·Ö±ðΪk1¡¢k2£¬Âú×ãk1+k2=0£¬ÇóÖ¤£ºÖ±Ïßl¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãµÄ×ø±ê£»
£¨ii£©ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãG£¨m£¬0£©£¬Ê¹µÃ|MG|=|NG|£¬ÇÒ|MN|=2£¿Èô´æÔÚ£¬Çó³öʵÊýmµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÇóµÃÅ×ÎïÏß×¼Ïß·½³ÌÔòc=1£¬ÔòÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©£¨i£©½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏÖ±ÏßµÄбÂʹ«Ê½£¬¿ÉµÃm=-2k£¬½ø¶øµÃµ½Ö±Ïߺã¹ý¶¨µã£¨2£¬0£©£»
£¨ii£©ÀûÓÃÏÒ³¤¹«Ê½ÇóµÃØ­MNØ­£¬ÓÉ|MG|=|NG|£¬GÔÚÏß¶ÎMNµÄÖд¹ÏßÉÏ£¬Ö±ÏßGDµÄ·½³Ì£¬ÇóµÃm2=$\frac{{k}^{2}{t}^{2}}{£¨2{k}^{2}+1£©^{2}}$£¬´úÈëÀûÓûù±¾²»µÈʽµÄÐÔÖÊ£¬¼´¿ÉÇóµÃʵÊýmµÄȡֵ·¶Î§£»

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$£¬Ôòa=$\sqrt{2}$c£¬
Å×ÎïÏßy2=-4x×¼Ïß·½³Ìx=1£¬Ôòc=1£¬
¡àa=$\sqrt{2}$£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+2k2£©x2+4ktx+2t2-2=0£¬
Ôò¡÷=16k2t2-8£¨1+2k2£©£¨t2-1£©£¾0£¬
Ôòx1+x2=-$\frac{4kt}{1+2{k}^{2}}$£¬x1x2=$\frac{2{t}^{2}-2}{1+2{k}^{2}}$£¬
£¨i£©Ö¤Ã÷£º¡ßk1+k2=$\frac{{y}_{1}}{{x}_{1}-1}$+$\frac{{y}_{2}}{{x}_{2}-1}$=$\frac{k{x}_{1}+t}{{x}_{1}-1}$+$\frac{k{x}_{2}+t}{{x}_{2}-1}$=0£¬
¡à2kx1x2-2t+£¨t-k£©£¨x1+x2£©=0£¬
´úÈëΤ´ï¶¨Àí£¬¿ÉµÃ2k•$\frac{2{t}^{2}-2}{1+2{k}^{2}}$-2t+£¨t-k£©£¨-$\frac{4kt}{1+2{k}^{2}}$£©=0£¬
»¯¼ò¿ÉµÃt=-2k£¬
ÔòÖ±Ïߵķ½³ÌΪy=kx-2k£¬¼´y=k£¨x-2£©£¬
¹ÊÖ±Ïßlºã¹ý¶¨µã£¨2£¬0£©£»
£¨ii£©¼ÙÉè´æÔÚµãG£¨m£¬0£©Âú×ãÌâÒâÌâÒ⣬حMNØ­=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$£¬
ÔòØ­MNØ­=$\frac{2\sqrt{2}\sqrt{{k}^{2}+1}•\sqrt{2{k}^{2}+1-{t}^{2}}}{2{k}^{2}+1}$=2£¬
»¯¼òÕûÀíµÃt2=$\frac{2{k}^{2}+1}{2£¨{k}^{2}+1£©}$£¬
´ËʱÅбðʽ¡÷=8£¨2k2+1-t2£©=8[2k2+1-$\frac{2{k}^{2}+1}{2£¨{k}^{2}+1£©}$]£¾0ºã³ÉÁ¢£¬
¡àk¡ÊR£¬
ÉèMNÖеãD£¨x0£¬y0£©£¬Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2kt}{2{k}^{2}+1}$£¬y0=$\frac{t}{2{k}^{2}+1}$£¬
ÓÉ|MG|=|NG|£¬ÔòGÔÚÏß¶ÎMNµÄÖд¹ÏßÉÏ£¬
µ±k¡Ù0£¬Ö±ÏßGDµÄ·½³ÌΪy-$\frac{t}{2{k}^{2}+1}$=-$\frac{1}{k}$£¨x+$\frac{2kt}{2{k}^{2}+1}$£©£¬µ±y=0£¬¿ÉµÃm=-$\frac{kt}{2{k}^{2}+1}$£¬
Ôòm2=$\frac{{k}^{2}{t}^{2}}{£¨2{k}^{2}+1£©^{2}}$£¬
Ôòm2=$\frac{{k}^{2}}{2{£¨k}^{2}+1£©£¨2{k}^{2}+1£©}$=$\frac{1}{2£¨2{k}^{2}+\frac{1}{{k}^{2}}+3£©}$£¬
¹Êm2¡Ü$\frac{1}{2£¨2\sqrt{2{k}^{2}•\frac{1}{{k}^{2}}+3}£©}$=$\frac{1}{2£¨2\sqrt{2}+3£©}$=$\frac{1}{£¨\sqrt{2}£©^{2}£¨\sqrt{2}+1£©^{2}}$£¬
¼´Ø­mØ­¡Ü$\frac{2-\sqrt{2}}{2}$£¬ÇÒm¡Ù0£¬
¡àmµÄȡֵ·¶Î§Îª[-$\frac{2-\sqrt{2}}{2}$£©¡È£¨0£¬$\frac{2-\sqrt{2}}{2}$]£¬
µ±k=0ʱ£¬m=0£¬
×ÛÉÏ£¬mµÄȡֵ·¶Î§Îª[-$\frac{2-\sqrt{2}}{2}$£¬$\frac{2-\sqrt{2}}{2}$]£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïߺã¹ý¶¨µãµÄÇ󷨣¬×¢ÒâÔËÓÃÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖ±ÏßµÄбÂʹ«Ê½£¬×¢ÒâÔËÓõȱÈÊýÁеÄÖÐÏîµÄÐÔÖʺÍΤ´ï¶¨Àí¼°ÏÒ³¤¹«Ê½£¬Öеã×ø±ê¹«Ê½£¬»ù±¾²»µÈʽµÄ×ÛºÏÓ¦Ó㬿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýf £¨x£©=lg$\frac{10}{\sqrt{1+4{x}^{2}}-2x}$£¬Ôòf £¨2017£©+f £¨-2017£©=£¨¡¡¡¡£©
A£®0B£®2C£®20D£®4034

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èô£¨a+b+c£©£¨b+c-a£©=3bc£¬¡÷ABCµÄÃæ»ýΪ$\frac{\sqrt{3}}{2}$£¬ÇÒb=1£¬Ôòa=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªÃüÌâP£ºÈôÆ½ÃæÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$Âú×㣨$\overrightarrow{a}$•$\overrightarrow{b}$£©•$\overrightarrow{c}$=£¨$\overrightarrow{b}$•$\overrightarrow{c}$£©•$\overrightarrow{a}$£¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{c}$Ò»¶¨¹²Ïߣ®ÃüÌâQ£ºÈô$\overrightarrow{a}$•$\overrightarrow{b}$£¾0£¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇÊÇÈñ½Ç£®ÔòÏÂÁÐÑ¡ÏîÖÐÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®P¡ÄQB£®£¨©VP£©¡ÄQC£®£¨©VP£©¡Ä£¨©VQ£©D£®P¡Ä£¨©VQ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚ¡÷ABCÖУ¬ÈýÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬ÇÒ$\frac{c-b}{{\sqrt{2}c-a}}=\frac{sinA}{sinB+sinC}$
£¨I£©Çó½ÇBµÄ´óС£¬
£¨¢ò£©Éè$\overrightarrow{m}=£¨sinA+cosA£¬1£©£¬\overrightarrow{n}=£¨2£¬cos£¨\frac{¦Ð}{2}-2A£©£©$£¬Çó$\overrightarrow{m}•\overrightarrow{n}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÕýÈýÀâÖùABC-A1B1C1µÄËùÓÐÀⳤ¾ùΪ2£¬DΪÀâBB1ÉÏÒ»µã£¬EÊÇABµÄÖе㣮
£¨1£©ÈôDÊÇBB1µÄÖе㣬֤Ã÷£ºÆ½ÃæADC1¡ÍÆ½ÃæA1EC£»
£¨2£©ÈôÆ½ÃæADC1ÓëÆ½ÃæABCµÄ¼Ð½ÇΪ45¡ã£¬ÇóBDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬-1£©£¬$\overrightarrow{b}$=£¨2£¬x£©£¬$\overrightarrow{b}$ÔÚ$\overrightarrow{a}$·½ÏòÉϵÄͶӰÊÇ-$\sqrt{2}$£¬ÔòʵÊýx=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÈçͼËùʾµÄÈýÀâÖùÖУ¬²àÃæABB1A1Ϊ±ß³¤µÈÓÚ2µÄÁâÐΣ¬ÇÒ¡ÏAA1B1=60¡ã£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬ÃæABC¡ÍÃæABB1A1£®
£¨1£©ÇóÖ¤£ºA1B1¡ÍAC1£»
£¨2£©Çó²àÃæA1ACC1ºÍ²àÃæBCC1B1Ëù³ÉµÄ¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ËĸöÈËÎ§×øÔÚÒ»ÕÅÔ²×ÀÅÔ£¬Ã¿¸öÈËÃæÇ°·Å×ÅÍêÈ«ÏàͬµÄÓ²±Ò£¬ËùÓÐÈËͬʱ·­×ª×Ô¼ºµÄÓ²±Ò£®ÈôÓ²±ÒÕýÃæ³¯ÉÏ£¬ÔòÕâ¸öÈËÕ¾ÆðÀ´£» ÈôÓ²±ÒÕýÃæ³¯Ï£¬ÔòÕâ¸öÈ˼ÌÐø×ø×Å£®ÄÇô£¬Ã»ÓÐÏàÁÚµÄÁ½¸öÈËÕ¾ÆðÀ´µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{7}{16}$C£®$\frac{1}{2}$D£®$\frac{9}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸