分析 f′(x)=2x+k,f′(1)=2+k=3,解得k.可得f(x)=x2+x.$\frac{1}{f(n)}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}-\frac{1}{n+1}$.再利用裂项求和方法即可得出.
解答 解:f′(x)=2x+k,f′(1)=2+k=3,解得k=1.
∴f(x)=x2+x.
∴$\frac{1}{f(n)}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴数列{$\frac{1}{f(n)}$}的前2017项和=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2017}-\frac{1}{2018})$=1-$\frac{1}{2018}$=$\frac{2017}{2018}$.
故答案为:$\frac{2017}{2018}$.
点评 本题考查了利用导数研究切线方程、裂项求和方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$] | B. | [1,$\sqrt{3}$] | C. | [1,2] | D. | [$\frac{1}{2}$,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com