精英家教网 > 高中数学 > 题目详情

已知函数时都取得极值
求a、b的值;
(2)函数f(x)的极值;
(3)若,方程恰好有三个根,求的取值范围.

(1)a=,b= 2
(2)

解析试题分析:解:⑴                    2分
                3分
代入解得a=,b= 2         5分
由(1)得 ,       6分
f(x)的递增区间是( ¥, )与(1,+¥),递减区间是( ,1) 8分
f(x)的极大值为, 极小值为       10分
问题等价于函数的图象有三个交点,     12分
由(2)得,f(x)的极大值为, 极小值为

              15分
考点:导数的运用
点评:主要是考查了导数在研究函数极值中的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是函数的两个极值点.
(1)若,求函数的解析式;
(2)若,求实数的最大值;
(3)设函数,若,且,求函数内的最小值.(用表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x _ 1)ex _ kx2(k∈R).
(Ⅰ)当k=1时,求函数f(x)的单调区间;
(Ⅱ)当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数的单调区间;
(2)若恒成立,求实数的取值范围;
(3)设,若对任意的两个实数满足,总存在,使得成立,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当时,取得极大值;当时,取得极小值.
的值;
处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)当x>0时,求证:
(2)是否存在实数a使得在区间[1.2)上恒成立?若存在,求出a的取值条件;
(3)当时,求证:f(1)+f(2)+f(3)+…+.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 , .  
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)当时,函数上的最大值为,若存在,使得成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)试问函数能否在处取得极值,请说明理由;
(Ⅱ)若,当时,函数的图像有两个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最大值;
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;
(Ⅲ)若,求证:

查看答案和解析>>

同步练习册答案