精英家教网 > 高中数学 > 题目详情

已知函数
(1)若,求函数的单调区间;
(2)若恒成立,求实数的取值范围;
(3)设,若对任意的两个实数满足,总存在,使得成立,证明:

(1) 函数的单调递减区间为(0,1),单调递增区间为(1,
(2)    (3)构造函数证明.

解析试题分析:(1)当时,函数,则
时,,当时,1,
则函数的单调递减区间为(0,1),单调递增区间为(1,
(2)恒成立,即恒成立,整理得恒成立.
,则,令,得.当时,,函数单调递增,当时,,函数单调递减,因此当时,取得最大值1,因而
(3)
因为对任意的总存在,使得成立,
所以,即


,其中,则,因而在区间(0,1)上单调递增,,又.所以,即
考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用
点评:本题是中档题,考查函数的导数的应用,不等式的综合应用,考查计算能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求函数在区间[1,3]上的极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若处取得极值,求的极大值;
(2)若在区间的图像在图像的上方(没有公共点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线处的切线互相垂直,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)如果函数的单调递减区间为,求函数的解析式;
(Ⅱ)对一切的,恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=1nx-a(x-l),a∈R
(I)讨论f(x)的单调性;
(Ⅱ)若x≥1时,石恒成立,求实数a的取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
求a、b的值;
(2)函数f(x)的极值;
(3)若,方程恰好有三个根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数.当时,函数取得极值
(1)求函数的解析式;
(2)若函数有3个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求使上是减函数的充要条件;
(2)求上的最大值。

查看答案和解析>>

同步练习册答案