精英家教网 > 高中数学 > 题目详情

已知f(x)=1nx-a(x-l),a∈R
(I)讨论f(x)的单调性;
(Ⅱ)若x≥1时,石恒成立,求实数a的取值范围,

(I)上单调递增;在上单调递减.(Ⅱ)

解析试题分析:解:(Ⅰ)的定义域为
①当时,则,∴上单调递增;
②当时,令,得;令,得
上单调递增;在上单调递减.
(Ⅱ)由题意,时,恒成立.
,则时恒成立.
 
①当时,,即上单调递减,
∴当时,恒成立矛盾.
②当时,对于方程(*),
(ⅰ),即时,,即上单调递增,
符合题意.
(ⅱ),即时,方程(*)有两个不等实根,不妨设,则
时,,即递减,∴恒成立矛盾.
综上,实数的取值范围为
另解:时,恒成立,
时,上式显然成立;当时,恒成立.
,可证上单调递减(需证明),
又由洛必达法则知,,∴
故,
考点:导数的应用
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的图像都过点,且它们在点处有公共切线.
(1)求函数的表达式及在点处的公切线方程;
(2)设,其中,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数  
(1)求函数上的最大值和最小值.
(2)过点作曲线的切线,求此切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数的单调区间;
(2)若恒成立,求实数的取值范围;
(3)设,若对任意的两个实数满足,总存在,使得成立,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)判断奇偶性, 并求出函数的单调区间;
(2)若函数有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)当x>0时,求证:
(2)是否存在实数a使得在区间[1.2)上恒成立?若存在,求出a的取值条件;
(3)当时,求证:f(1)+f(2)+f(3)+…+.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)若,判断函数在定义域内的单调性;
(II)若函数在内存在极值,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若,求曲线处的切线方程;
(2)若恒成立,求的取值范围。

查看答案和解析>>

同步练习册答案