精英家教网 > 高中数学 > 题目详情

已知函数  
(1)求函数上的最大值和最小值.
(2)过点作曲线的切线,求此切线的方程.

(1)  (2)切线方程为.

解析试题分析:(I),                  
时,
为函数的单调增区间 
时,
为函数的单调减区间        
又因为,           
所以当时,          
时,                                
(II)设切点为,则所求切线方程为
                        
由于切线过点
解得                                      
所以切线方程为
  
考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.
点评:本题考查了利用导函数求区间上的最值问题,难度不大,关键是掌握导函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数为常数)
(Ⅰ)讨论的单调性;
(Ⅱ)若,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若在实数集R上单调递增,求的范围;
(Ⅱ)是否存在实数使上单调递减.若存在求出的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(e为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若处取得极值,求的极大值;
(2)若在区间的图像在图像的上方(没有公共点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求曲线y=x2,直线y=x,y=3x围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线处的切线互相垂直,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=1nx-a(x-l),a∈R
(I)讨论f(x)的单调性;
(Ⅱ)若x≥1时,石恒成立,求实数a的取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的导函数.
(Ⅰ)若,求的值;
(Ⅱ)若图象与图象关于直线对称,△ABC的三个内角A、B、C所对的边长分别为,角A为的初相,,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案