精英家教网 > 高中数学 > 题目详情

设函数为常数)
(Ⅰ)讨论的单调性;
(Ⅱ)若,证明:当时,.

①②见题解析

解析试题分析:(Ⅰ)求函数的导数,分类讨论二次函数的零点情况,确定导函数的正负取值区间,进一步确定原函数的单调性. (Ⅱ)先把原不等式等价转化为,由于我们只能运用求导的方法来研究这个函数的值域,而此函数由于求导后不能继续判断导函数的正负区间,故利用均值不等式进行放缩, 后,函数可以通过求导研究值域,且 恒成立是恒成立的充分条件,注意需要二次求导.
试题解析:(Ⅰ)的定义域为, 
(1)当时,解得解得
所以函数上单调递增,在上单调递减;
(2)当时,恒成立,所以函数上单调递增;
(3)当时,解得解得
所以函数上单调递增,在上单调递减. ……(6分)
(Ⅱ)证明:不等式等价于
因为, 所以 ,
因此    
, 则
得:当
所以上单调递减,从而. 即
上单调递减,得:
 当时,.. ……(12分)
考点:1.函数导数的求法;2.导数的应用;3.均值不等式;4.放缩法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中
(I)求函数的单调区间;
(II)当时,若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x-ax+(a-1).
(1)讨论函数的单调性;(2)若,设
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x,x,xx,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数
(Ⅰ)当时,求函数的单调增区间;
(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)求的单调区间;
(Ⅱ)若,且在区间内存在极值,求整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数().
(Ⅰ)当时,求函数的极值;   
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数是处取得极值,且.
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像都过点,且它们在点处有公共切线.
(1)求函数的表达式及在点处的公切线方程;
(2)设,其中,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数  
(1)求函数上的最大值和最小值.
(2)过点作曲线的切线,求此切线的方程.

查看答案和解析>>

同步练习册答案