精英家教网 > 高中数学 > 题目详情
(12分)已知函数
(1)若,求函数在点(0,)处的切线方程;
(2)是否存在实数,使得的极大值为3.若存在,求出值;若不存在,说明理由。
(1);(2)

试题分析:由题意知:
…………………………………………………2分
(1)当时,,则:…………4分
所以函数在点(0,)处的切线方程为:…………6分
(2)令: ,则:
,所以:………………………………7分
1)当时,,则函数在上单调递增,故无极值。……………………………………………………………………………………8分
2)当







+
0
-
0
+


极大

极小

所以:,则……………………………………………………12分
点评:中档题,本题属于导数应用中的基本问题,(2)通过研究函数的极值情况,确定得到a的方程,从而得解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分12分)
某市居民生活用水标准如下:
用水量t(单位:吨)
每吨收费标准(单位:元)
不超过2吨部分
m
超过2吨不超过4吨部分
3
超过4吨部分
n
已知某用户1月份用水量为3.5吨,缴纳水费为7.5元;2月份用水量为6吨,缴纳水费为21元.设用户每月缴纳的水费为y元.
(1)写出y关于t的函数关系式;
(2)某用户希望4月份缴纳的水费不超过18元,求该用户最多可以用多少吨水?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求的单调区间和值域;
(Ⅱ)设,函数,若对于任意,总存在使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则                     ;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间上不是增函数的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于函数,若存在x0∈R,使方程成立,则称x0的不动点,已知函数a≠0).
(1)当时,求函数的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域是一切实数的函数,其图像是连续不断的,且存在常数()
使得对任意实数都成立,则称是一个“—伴随函数”. 有
下列关于“—伴随函数”的结论:
是常数函数中唯一一个“—伴随函数”;
②“—伴随函数”至少有一个零点;
是一个“—伴随函数”;
其中正确结论的个数是 (    )
A.1个;B.2个;C.3个;D.0个;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数f (x)和g(x),其定义域为[a, b],若对任意的x∈[a, b]总有|1-|≤,则称f (x)可被g(x)置换,那么下列给出的函数中能置换f (x)= x∈[4,16]的是 (    )
A.g(x)=2x+6 x∈[4,16]B.g(x)=x2+9 x∈[4,16]
C.g(x)= (x+8) x∈[4,16]D.g(x)=(x+6) x∈[4,16]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数,若存在区间,使得,则称区间为函数的一个“稳定区间”.现有四个函数:①; ②
 ④.其中存在“稳定区间”的函数有(      )
A.①②B.②③C.③④D.②④

查看答案和解析>>

同步练习册答案