| A. | $\sqrt{3}$-1 | B. | $\frac{\sqrt{3}-1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |
分析 利用直线的斜率公式与角的正切值的关系,求得P坐标代入椭圆方程,即可求得a与b的关系,求得椭圆的离心率.
解答 解:设A(-a,0),B(a,0),P(x,y),(m>0,n>0),
由△APB中,tanA=$\frac{1}{3}$,tanB=$\frac{3}{4}$,
可得直线PA的斜率为$\frac{y}{x+a}$=$\frac{1}{3}$,
直线PB的斜率为$\frac{y}{x-a}$=-$\frac{3}{4}$,
解得:x=$\frac{5}{13}$a,y=$\frac{6}{13}$a,
将P($\frac{5}{13}$a,$\frac{6}{13}$a)代入椭圆方程,可得:$\frac{25{a}^{2}}{169{a}^{2}}$+$\frac{36{a}^{2}}{169{b}^{2}}$=1,
化简可得$\frac{{a}^{2}}{{b}^{2}}$=4,即$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{4}$,
椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{2}$,
故选C.
点评 本题考查椭圆的离心率的求法,注意运用直线的斜率公式和点满足椭圆方程,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 借(还)书等待时间T1(分钟) | 1 | 2 | 3 | 4 | 5 |
| 频数 | 1500 | 1000 | 500 | 500 | 1500 |
| 借(还)书等待时间T2(分钟) | 1 | 2 | 3 | 4 | 5 |
| 频数 | 1000 | 500 | 2000 | 1250 | 250 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{25}{2}$ | C. | 25 | D. | 50 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com