ÍÖÔ²x2+
y2
4
=1¶ÌÖáµÄ×óÓÒÁ½¸ö¶Ëµã·Ö±ðΪA£¬B£¬Ö±Ïßl¹ý¶¨µã£¨0£¬1£©½»ÍÖÔ²ÓÚÁ½µãC£¬D£®
£¨1£©ÈôlÓëxÖá¡¢yÖá·Ö±ð½»ÓÚÁ½µãE£¬F£¬
CE
=
FD
£¬ÇóÖ±ÏßlµÄ·½³Ì£º
£¨2£©ÉèÖ±ÏßAD£¬CBµÄбÂÊ·Ö±ðΪk1k2£¬Èôk1£ºk2=2£º1£¬ÇókµÄÖµ£®
£¨3£©£¨Àí£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬·Ö±ð¹ýC¡¢D×÷бÂÊΪ-
4x1
y1
ºÍ-
4x2
y2
Á½ÌõÖ±Ïßl1ºÍl2£®¼Çl1ºÍl2µÄ½»µãΪM£¬Çó¡÷MCDÃæ»ýµÄ×îСֵ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ö±Ïß´úÈëÍÖÔ²·½³ÌµÃ£¨4+k2£©x2+2kx-3=0£¬ÔÙÓÉÅбðʽºÍ¸ùÓëϵÊýµÄ¹ØÏµ¿ÉÍÆµ¼³öËùÇóÖ±ÏßlµÄ·½³ÌΪ2x-y+1=0»ò2x+y-1=0£®
£¨2£©ÓÉÌâÉèÖªy12=4£¨1-x12£©£¬y22=4£¨1-x22£©£¬ÓÉ´ËÍÆ³ö3x1x2+5£¨x1+x2£©+3=0£¬ËùÒÔ3k2-10k+3=0£¬ÓÉ´Ë¿ÉÍÆµ¼³ökµÄÖµ£®
£¨3£©Çó³öMµÄ¹ì¼£·½³Ì£¬½áºÏͼÐΣ¬¿ÉµÃ¡÷MCDÃæ»ýµÄ×îСֵ£®
½â´ð£º ½â£º£¨1£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ö±Ïßl£ºy=kx+1
´úÈëÍÖÔ²·½³ÌµÃ£¨4+k2£©x2+2kx-3=0£¬
¡÷=4k2+12£¨4+k2£©=16k2+48£¬
x1+x2=-
2k
4+k2
£¬x1x2=-
3
4+k2

ÓÉÒÑÖªE£¨-
1
k
£¬0£©£¬F£¨0£¬1£©£¬
ÓÖ
CE
=
FD
£¬ËùÒÔ£¨-
1
k
-x1£¬-y1£©=£¨x2£¬y2-1£©£¬
ËùÒÔ-
1
k
-x1=x2£¬¼´x1+x2=-
1
k

ËùÒÔ-
2k
4+k2
=-
1
k
£¬½âµÃk=¡À2£¬·ûºÏÌâÒ⣬
ËùÒÔ£¬ËùÇóÖ±ÏßlµÄ·½³ÌΪ2x-y+1=0»ò2x+y-1=0£®
£¨2£©k1=
y2
x2+1
£¬k2=
y1
x1-1
£¬k1£ºk2=2£º1£¬
ËùÒÔ
y2(x1-1)
y1(x2+1)
=2£¬
ƽ·½£¬½áºÏx12+
y12
4
=1£¬ËùÒÔy12=4£¨1-x12£©£¬Í¬Àíy22=4£¨1-x22£©£¬´úÈëÉÏʽ£¬
¼ÆËãµÃ
(1-x2)(1-x1)
(1+x1)(1+x2)
=4£¬¼´3x1x2+5£¨x1+x2£©+3=0£¬
ËùÒÔ3k2-10k+3=0£¬½âµÃk=3»òk=
1
3
£¬
ÒòΪ
y2(x1-1)
y1(x2+1)
=2£¬x1£¬x2¡Ê£¨-1£¬1£©£¬ËùÒÔy1£¬y2ÒìºÅ£¬¹ÊÉáÈ¥k=
1
3
£¬
ËùÒÔk=3£®
£¨3£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬·Ö±ð¹ýC¡¢D×÷бÂÊΪ-
4x1
y1
ºÍ-
4x2
y2
Á½ÌõÖ±Ïßl1ºÍl2£¬·½³ÌΪ4x1x+y1y-4=0£¬4x2x+y2y-4=0£¬¡àMµÄ¹ì¼£·½³ÌΪy=4£¬
ÓÉy=1¿ÉµÃx=¡À
3
2
£¬¡àCD¡ÎxÖáʱ£¬¡÷MCDÃæ»ýµÄ×îСֵΪ
1
2
¡Á
3
¡Á3
=
3
3
2
£®
µãÆÀ£º±¾Ì⿼²éÔ²×¶ÇúÏßµÄ×ÛºÏÔËÓã¬ÊÇÀúÄê¸ß¿¼ÌâµÄÖØÒªÌâÐÍÖ®Ò»£¬½âÌâʱҪעÒâ¼ÆËãÄÜÁ¦µÄÅàÑø£¬×¢Òâ»ýÀÛ½âÌâ·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÔOxΪʼ±ß×÷½Ç¦ÁÓë¦Â£¨0£¼¦Â£¼¦Á£¼¦Ð£©£¬ËüÃǵÄÖձ߷ֱðÓ뵥λԲÏཻÓÚµãP¡¢Q£¬ÒÑÖªµãPµÄ×ø±êΪ(-
4
5
£¬
3
5
)
£®
£¨1£©Çó
sin2¦Á-1-cos2¦Á
(1-tan¦Á)cos¦Á
掙术
£¨2£©ÈôPQ=
2
£¬Çósin£¨¦Á+¦Â£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪˫ÇúÏß½¹µãΪF1£¨-4£¬0£©¡¢F2£¨4£¬0£©£¬ÇÒ¾­¹ýµãM£¨2
6
£¬2£©£¬ÇóË«ÇúÏߵıê×¼·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÇúÏßy=cosx+exÔڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³ÌΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ȫ¼¯U={0£¬1£¬2£¬3£¬4}£¬M={0£¬1£¬2}£¬N={2£¬3}£¬Ôò£¨∁UM£©¡ÉN=£¨¡¡¡¡£©
A¡¢{2}
B¡¢{2£¬3£¬4}
C¡¢{3}
D¡¢{0£¬1£¬2£¬3£¬4}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚËùÓÐÀⳤ¾ùΪ2µÄËÄÃæÌåABCDÖУ¬EÊÇBCµÄÖе㣬д³öËÄÃæÌåÖÐÓëÆ½ÃæAED´¹Ö±µÄÃæ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

·½³Ì£¨x+y-1£©
x2+y2-4
=0Ëù±íʾµÄÇúÏßÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª¦Á¡É¦Â=l£¬CA¡Í¦ÁÓÚµãA£¬CB¡Í¦ÂÓÚµãB£¬a?¦Á£¬a¡ÍAB£¬ÇóÖ¤£ºa¡Îl£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÕýÏîÊýÁÐ{an}Âú×ãlog3an+1=log3an+1£¨n¡ÊN*£©£¬ÇÒa1=1£¬ÔòÊýÁÐ{log3an}µÄǰnÏîºÍÊÇ£¨¡¡¡¡£©
A¡¢
n(n-1)
2
B¡¢n-1
C¡¢
n(n+1)
2
D¡¢n

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸