精英家教网 > 高中数学 > 题目详情
15.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=$\sqrt{3}$a•cosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,分别求a和c的值.

分析 (1)由bsinA=$\sqrt{3}$a•cosB,由正弦定理可得:sinBsinA=$\sqrt{3}$sinAcosB,化简整理即可得出.
(2)由sinC=2sinA,可得c=2a,由余弦定理可得:b2=a2+c2-2accosB,代入计算即可得出.

解答 解:(1)∵bsinA=$\sqrt{3}$a•cosB,由正弦定理可得:sinBsinA=$\sqrt{3}$sinAcosB,
∵sinA≠0,∴sinB=$\sqrt{3}$cosB,
B∈(0,π),
可知:cosB≠0,否则矛盾.
∴tanB=$\sqrt{3}$,∴B=$\frac{π}{3}$.
(2)∵sinC=2sinA,∴c=2a,
由余弦定理可得:b2=a2+c2-2accosB,
∴9=a2+c2-ac,
把c=2a代入上式化为:a2=3,解得a=$\sqrt{3}$,
∴$c=2\sqrt{3}$.

点评 本题考查了正弦定理余弦定理、三角形内角和定理与三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=alog2x,g(x)=blog3x(x>1),其中常数a.b≠0.
(1)证明:用定义证明函数k(x)=f(x)•g(x)的单调性;
(2)设函数φ(x)=m•2x+n•3x,其中常数m,n满足m.n<0,求φ(x+1)>φ(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:
①a1+c1=a2+c2; ②a1-c1=a2-c2; ③c1a2>a1c2; ④$\frac{{c}_{1}}{{a}_{1}}$<$\frac{{c}_{2}}{{a}_{2}}$.
其中正确的式子序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(1+x)2(1-x)5的展开式中x5的系数-1(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.小勇是江苏省启东中学2014级高一学生,为他将来读大学的费用做好准备,他父母计划从2014年8月1日起至2016年8月1日期间,每月初定期到银行存款x元(按复利计算),2016年9月1日全部取出,月利率按2%计算,预计大学的费用为6万元,则x=1875.(计算结果精确到元,可参考以下数据:1.0224=1.61,1.0225=1.64,1.0226=1.67)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日    期1月10日2月10日3月10日4月10日5月10日6月10日
昼夜温差x(°C)1011131286
就诊人数y(个)222529261612
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ) 若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+a;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:b=$\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.以物体的运动方程是s=(t+1)2(t-1)那么物体在在1秒末的瞬时速度等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出下列命题:
①若z∈C,则z2≥0
②若a,b∈R,且a>b,则a+i>bA+i
③若a∈R,则(a+1)i是纯虚数
④若z=$\frac{1}{i}$,则z3+1对应的点在复平面内的第一象限
其中正确的命题是④.(写出你认为正确的所有命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果等差数列{an}中,a3+a4+a5=12,那么S7=(  )
A.14B.21C.28D.35

查看答案和解析>>

同步练习册答案