精英家教网 > 高中数学 > 题目详情
3.(1+x)2(1-x)5的展开式中x5的系数-1(用数字作答).

分析 多项式的展开、整理变形,即可求出(1+x)2(1-x)5的展开式中x5的系数.

解答 解:(1+x)2(1-x)5=(1-2x2+x4)(1-3x+3x2-x3),
∴(1+x)2(1-x)5的展开式中x5的系数是-3+2=-1,
故答案为:-1.

点评 本题考查利用二项展开式定理解决二项展开式的特定项问题,解题的关键在于多项式的展开、整理变形,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,如果输入的N=10,那么输出的S=(  )
A.45B.50C.55D.66

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=sin(φx+$\frac{π}{3}$) (φ>0),f($\frac{π}{6}$)=f($\frac{π}{3}$),且f(x)在区间($\frac{π}{6}$,$\frac{π}{3}$)有且只有一个最值,则φ的一个可能值是$\frac{14}{3}$ 或$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆中心在原点,焦点在y轴上,长轴长为6,离心率为$\frac{2}{3}$.则椭圆方程(  )
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数$f(x)=1+a•{({\frac{1}{2}})^x}+{({\frac{1}{4}})^x}$;
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以4为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}满足:a1=2,an+1=a1+a2+…+an+6,(n∈N*).
(1)判断{an}是不是等比数列,并说明理由;
(2)令bn=log2 an,若x<$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$<y对一切n∈N*成立,求x和y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=$\sqrt{3}$a•cosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,分别求a和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=cos2x+2sinx在区间$[{-\frac{π}{6},π}]$上的最大值为(  )
A.1B.2C.-$\frac{1}{4}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.f(x)=sin2x+cos2x的周期为(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

同步练习册答案