精英家教网 > 高中数学 > 题目详情
5.在△ABC中,a,b,c分别为角A,B,C所对的边,若c=4,且C=60°,则ab的最大值为(  )
A.4B.1+$\sqrt{3}$C.16D.$\frac{1+\sqrt{3}}{2}$

分析 特殊角的三角函数值得到cosC=$\frac{1}{2}$,再根据余弦定理和基本不等式即可求出.

解答 解:∵在△ABC中,C=60°,
∴cosC=$\frac{1}{2}$,
∵c=4,c2=a2+b2-2abcosC,
∴16=a2+b2-ab≥2ab-ab=ab,当且仅当a=b=4时取等号,
∴ab≤4,
则ab的最大值为4.
故选:A.

点评 此题考查了正弦、余弦定理,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.平面直角坐标系xoy中,直线l的参数方程是$\left\{\begin{array}{l}x=\sqrt{3}+tcos\frac{π}{4}\\ y=tsin\frac{π}{4}\end{array}$(t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是$\frac{{{ρ^2}{{cos}^2}θ}}{4}$+ρ2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列关系中,属于相关关系的是(  )
A.正方形的边长与面积B.农作物的产量与施肥量
C.人的身高与眼睛近视的度数D.哥哥的数学成绩与弟弟的数学成绩

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c-b)cosA.
(1)若asinB=2$\sqrt{2}$,求b;
(2)若a=2$\sqrt{2}$,且△ABC的面积为$\sqrt{2}$,求b+c的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(I)求函数f(x)的解析式
(II)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,已知四边形ABFD为直角梯形,AB∥DF,∠ADF=$\frac{π}{2}$,BC⊥DF,△AED为等边三角形,AD=$\frac{{10\sqrt{3}}}{3}$,DC=$\frac{{2\sqrt{7}}}{3}$,如图2,将△AED,△BCF分别沿AD,BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,连接EF,DF,设G为AE上任意一点.

(1)证明:DG∥平面BCF;
(2)若GC=$\frac{16}{3}$,求$\frac{EG}{GA}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x||x-1|<2},B={x|(x-a)(x+2)<0},C={x|$\frac{x+11}{x+3}$≥2};
(1)若A∪B=B,求a的取值范围;
(2)若A∪B=B∩C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在函数①y=cos|2x|;②y=sin(2x+$\frac{π}{3}$);③y=|cosx|;④y=tan(2x-$\frac{π}{6}$)中,最小正周期为π的所有函数为(  )
A.①②③B.①②③④C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线y=sin$\frac{πx}{2}$与y=x3围成的图形的面积是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{π}-\frac{1}{4}$D.$\frac{4}{π}-\frac{1}{2}$

查看答案和解析>>

同步练习册答案