精英家教网 > 高中数学 > 题目详情
3.在等差数列{an}中,a2=4,a3+a8=15.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}-2}$+2n+1,求b1+b2+b3+…+b10的值.

分析 (1)利用等差数列的通项公式即可得出.
(2)利用等差数列与等比数列的求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a2=4,a3+a8=15.
∴$\left\{\begin{array}{l}{{a}_{1}+d=4}\\{2{a}_{1}+9d=15}\end{array}\right.$,解得a1=3,d=1.
∴an=3+(n-1)=n+2.
(2)bn=2${\;}^{{a}_{n}-2}$+2n+1=2n+(2n+1),
∴b1+b2+b3+…+b10=$\frac{2({2}^{10}-1)}{2-1}$+$\frac{10(3+2×10+1)}{2}$=211-118.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=2x-1(x∈R),规定:给定一个实数x0,第一次赋值x1=f(x0),若x1≤257,则继续第二次赋值x2=f(x1),若x2≤257,则继续第三次赋值x3=f(x2),…,以此类推,若xn-1≤257,则xn=f(xn-1),否则停止赋值,已知第8次赋值后该过程停止,则x0的取值范围是(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(Ⅰ)求不等式|2x-4|+|x+1|≥5解集;
(Ⅱ)已知a,b为正数,若直线(a-1)x+2y+6=0与直线2x+by-5=0互相垂直,求证:$\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}$≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x2,则函数y=f(x)-log5|x-1|的零点个数是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,网格纸上每个小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为$9+18\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b,c满足c<b<a,且ac<0,下列选项中不一定成立的是(  )
A.ab>acB.c(b-a)>0C.ac(a-c)<0D.cb2>ab2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在极坐标系中,曲线C:ρ=$\frac{2}{cosθ+2sinθ}$,A,B是曲线C上的两点,O为极点,∠AOB=$\frac{π}{2}$,则△AOB面积的最小值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在正方体ABCD-A1B1C1D1中,点O为线段BD的中点,直线OC与平面A1BD所成的角为α,则sin α的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y的值如表所示,如果y与x呈线性相关且回归直线方程为$\widehat{y}$=bx+17.5,则b的值为(  )
x24568
y3040605070
A.6B.-6C.-6.5D.6.5

查看答案和解析>>

同步练习册答案