精英家教网 > 高中数学 > 题目详情

如图,四边形是正方形,平面分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)求平面与平面所成锐二面角的大小;

(Ⅲ)在线段上是否存在一点,使直线与直线  

所成的角为?若存在,求出线段的长;若   

不存在,请说明理由.


(Ⅰ)证明:因为,分别为的中点,

所以.

平面平面

所以平面.                                   

(Ⅱ)因为平面

所以平面

所以.

又因为四边形是正方形,

所以.

如图,建立空间直角坐标系,

因为,

所以

…………5分

因为分别为的中点,

所以. 所以.

为平面的一个法向量,则,即

再令,得.,.

为平面的一个法向量,则,

,令,得.

所以==.

所以平面与平面所成锐二面角的大小为.          

(Ⅲ)假设在线段上存在一点,使直线与直线所成角为.

依题意可设,其中.

,则.

又因为,,所以.

因为直线与直线所成角为

所以=,即,解得.

所以.

所以在线段上存在一点,使直线与直线所成角为,此时.                        


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


等差数列的前三项为,则这个数列的通项公式为           (    )

A.        B.    C.       D. 

查看答案和解析>>

科目:高中数学 来源: 题型:


在R上定义运算若对任意,不等式

都成立,则实数的取值范围是

A.     B.         C.     D.

查看答案和解析>>

科目:高中数学 来源: 题型:


若双曲线的渐近线与抛物线有公共点,则此双曲线的离心率的取值范围是

A.          B.          C.          D.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,切圆于点,割线经过圆心,则         ,△的面积是         

查看答案和解析>>

科目:高中数学 来源: 题型:


 “”是“直线与直线平行”的

(A) 充分不必要条件    (B) 必要不充分条件 

(C) 充要条件      (D) 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:


已知是虚数单位,那么等于  

查看答案和解析>>

科目:高中数学 来源: 题型:


运行如图的程序框图,若输出的结果是,则判断框中可填入

   A.         B.           C.            D.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知函数,则使函数有零点的实数的取值范

围是(  )

A.      B.      C.     D.

查看答案和解析>>

同步练习册答案