精英家教网 > 高中数学 > 题目详情
(2012•马鞍山二模)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l交椭圆于A、B两个不同点(A、B与M不重合).
(Ⅰ)求椭圆的方程;
(Ⅱ)当MA⊥MB时,求m的值.
分析:(Ⅰ)设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,根据长轴长是短轴长的2倍且经过点M(2,1),建立方程组,即可求得椭圆的方程;
(Ⅱ)依题意kOM=
1
2
,设直线l的方程代入椭圆方程,整理并利用韦达定理,结合MA⊥MB,即
MA
MB
=0
,从而可求m的值.
解答:解:(Ⅰ)设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)

a=2b
4
a2
+
1
b2
=1
,∴a2=8,b2=2
∴椭圆方程为
x2
8
+
y2
2
=1
…(6分)
(Ⅱ)依题意kOM=
1
2
,…(7分)
可设直线l的方程为:y=
1
2
x+m
,A(x1,y1),B(x2,y2),则
MA
=(x1-2,y1-1)
MB
=(x2-2,y2-1)

∵MA⊥MB,∴
MA
MB
=0

∴x1x2-2(x1+x2)+y1y2-(y1+y2)+5=0
5
4
x1x2+(
1
2
m-
5
2
)(x1+x2)+m2-2m+5=0…①
由y=
1
2
x+m
代入椭圆方程,消y并整理化简得:x2+2mx+2m2-4=0
∴△=(2m)2-4(2m2-4)>0,解得:-2<m<2…(10分)
由韦达定理得:x1+x2=-2m,x1x2=2m2-4代入①得:
5
4
(2m2-4)+(
1
2
m-
5
2
)×(-2m)+m2-2m+5=0…①
解得m=0或m=-
6
5
…(12分)
∵点A,B异于M,∴m=-
6
5
…(13分)
点评:本题考查椭圆的性质及直线和圆锥曲线的位置关系,考查向量知识的运用,属于中等题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•马鞍山二模)设同时满足条件:①
bn+bn+2
2
bn+1
;②bn≤M(n∈N+,M是与n无关的常数)的无穷数列{bn}叫“嘉文”数列.已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)
(a为常数,且a≠0,a≠1).
(1)求{an}的通项公式;
(2)设bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值,并证明此时{
1
bn
}
为“嘉文”数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异?
月收入不低于55百元的人数 月收入低于55百元的人数 合计
赞成 a= b=
不赞成 c= d=
合计
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
参考值表:
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)已知椭圆C1
x2
m+2
+
y2
n
=1
与双曲线C2
x2
m
-
y2
n
=1
共焦点,则椭圆C1的离心率e的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)己知在锐角△ABC中,角A,B,C所对的边分别为a、b、c,向量
m
=(a2+b2-c2,ab),
n
=(sinC,-cosC),且
m
n

(I)求角C的大小;
(II)当c=1时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)设x1,x2是关于x的方程x2+mx+
1+m2
=0的两个不相等的实数根,那么过两点A(x1x12)B(x2x22)的直线与圆x2+y2=2的位置关系是(  )

查看答案和解析>>

同步练习册答案