精英家教网 > 高中数学 > 题目详情
已知a为实数,f(x)=a-
2
2x+1
(x∈R)

(1)求证:对于任意实数a,y=f(x)在(-∞,+∞)上是增函数;
(2)当f(x)是奇函数时,若方程f-1(x)=log2(x+t)总有实数根,求实数t的取值范围.
(1)设x1>x2
则f(x1)-f(x2)=-
2
2x1+1
+
2
2x2+1

∴x1>x2
2x12x2
2
2x1+1
2
2x2+1

∴f(x1)-f(x2)=-
2
2x1+1
+
2
2x2+1
>0
∴f(x1)>f(x2
∴函数f(x)在定义域上为增函数.
(2)因为f(x)是R上的奇函数,所以f(0)=a-
2
20+1
=0

即a=1.f-1(x)=log2
1+x
1-x
(-1<x<1)

log2
1+x
1-x
=log2(x+t)
t=(1-x)+
2
1-x
-2≥2
2
-2

当且仅当1-x=
2
1-x
,即x=1-
2
时等号成立,
所以,t的取值范围是[2
2
-2,+∞)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a为实数,f(x)=a-
22x+1
(x∈R)

(1)求证:对于任意实数a,y=f(x)在(-∞,+∞)上是增函数;
(2)当f(x)是奇函数时,若方程f-1(x)=log2(x+t)总有实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题共有2个小题,第1小题满分6分,第2小题满分10分.
已知a为实数,f(x)=a-
22x+1
(x∈R)

(1)求证:对于任意实数a,y=f(x)在(-∞,+∞)上是增函数;
(2)当f(x)是奇函数时,若方程f-1(x)=log2(x+t)总有实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年北师大附中月考文) 已知a为实数,f (x ) = (x2-4)(xa).

(1)若(-1) = 0,求f (x )在[-4,4]上的最大值和最小值;

(2)若f (x )在(-∞,-22,+∞)上都是递增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题共有2个小题,第1小题满分6分,第2小题满分10分.
已知a为实数,f(x)=a-
2
2x+1
(x∈R)

(1)求证:对于任意实数a,y=f(x)在(-∞,+∞)上是增函数;
(2)当f(x)是奇函数时,若方程f-1(x)=log2(x+t)总有实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,f(x)=(x2-4)(x-a)

(Ⅰ)求导数f′(x);

(Ⅱ)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值;

(Ⅲ)若f(x)在(-∞,-2]和[2,+∞)上都是递增的,求a的取值范围.

查看答案和解析>>

同步练习册答案