精英家教网 > 高中数学 > 题目详情
2.如果复数$\overline{z}=\frac{2}{-1+i}$,则(  )
A.|z|=2B.z的实部为1
C.z的虚部为-1D.z的共轭复数为-1-i

分析 直接由复数代数形式的乘除运算化简复数$\overline{z}=\frac{2}{-1+i}$,求出z,然后求出z的模,z的实部,z的虚部,z的共轭复数得答案.

解答 解:∵$\overline{z}=\frac{2}{-1+i}$=$\frac{2(-1-i)}{(-1+i)(-1-i)}=-1-i$,
∴z=-1+i.
则$|z|=\sqrt{(-1)^{2}+1}=\sqrt{2}$,z的实部为:-1,z的虚部为:1,z的共轭复数为:-1-i.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.复平面上平行四边形ABCD的四个顶点中,A、B、C所对应的复数分别为2-3i、-2-3i、-3+2i,则D点对应的复数是(  )
A.1+2iB.1-2iC.2-iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为$-\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知关于θ的方程$\sqrt{3}sinθ+cosθ+a=0$在区间(0,2π)上有两个不相等的实数根α、β,则sin(α+β)=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.圆x2+y2-4x=0在点P(4,1)处的切线方程为3x+4y-16=0或x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若复数z=2m2-3m-2+(6m2+5m+1)i是纯虚数,则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义A-B={x|x∈A且x∉B}.已知A={1,2},B={1,3,4},则A-B=(  )
A.{1}B.{2}C.{3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.要从8名男医生和7名女医生中选5人组成一个医疗队,如果其中至少有2名男医生和至少有2名女医生,则不同的选法种数为(  )
A.(C${\;}_{8}^{3}$+C${\;}_{7}^{2}$)(C${\;}_{7}^{3}$+C${\;}_{8}^{2}$)B.(C${\;}_{8}^{3}$+C${\;}_{7}^{2}$)+(C${\;}_{7}^{3}$+C${\;}_{8}^{2}$)
C.C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$C${\;}_{8}^{2}$D.C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$+C${\;}_{11}^{1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC,BC=3,AB=$\sqrt{6},∠C=\frac{π}{4}$,则∠A=$\frac{π}{3}或\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案