分析 (Ⅰ)根据函数的最值以及对称轴之间的关系即可求A,ω;
(Ⅱ)求出函数f(x)的解析式,解方程f($\frac{α}{2}$)=2即可.
解答 解:(Ⅰ)∵函数f(x)的最大值为3,∴A+1=3,即A=2,
∵函数f(x)的图象相邻两条对称轴之间的距离为$\frac{π}{2}$,
则函数的周期为T=π,即$\frac{2π}{ω}$=π,
得ω=2,则A=2,ω=2.
(Ⅱ)∵A=2,ω=2.
∴f(x)=2sin(2x-$\frac{π}{6}$)+1
则f($\frac{α}{2}$)=2sin(α-$\frac{π}{6}$)+1=2,
即sin(α-$\frac{π}{6}$)=$\frac{1}{2}$,
∵α∈(0,$\frac{π}{2}$),
∴-$\frac{π}{6}$<α-$\frac{π}{6}$<$\frac{π}{3}$,
∴α-$\frac{π}{6}$=$\frac{π}{6}$,
即α=$\frac{π}{3}$.
点评 本题主要考查三角函数图象和性质,根据条件求出A,ω的值是解决本题的关键.考查学生的运算和推理了能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y2=x | B. | y2=2x | C. | y2=3x | D. | y2=4x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1,0,1} | B. | {-1,0} | C. | {0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 80 | 75 | 70 | 65 | 60 |
| y | 70 | 66 | 68 | 64 | 62 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 外切 | B. | 相离 | C. | 相交 | D. | 内切 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com