精英家教网 > 高中数学 > 题目详情
(15分)在三棱锥P-ABC中,.

(1)求证:平面平面
(2)求BC与平面PAB所成角的正弦值;
(3)在棱BC上是否存在点Q使得AQ与PC成的角?若存在,求BQ的长;若不存在,请说明理由.
(1)见解析(2)(3)见解析

(1)证明:由题意得:,又,所以平面,所以平面平面         5分
(2)解:法一、由(1)得平面,所以,又,所以平面,所以PB是直线BC在平面PAB内的射影,所以就是直线BC与平面PAB所成的角,易得         10分
法二、建立空间直角坐标系,利用空间向量求解.
(3)法一、设,则
,所以,所以         15分
【考点定位】本题考查空间面面垂直、直线与直线所成的角及异面直线所成的角,考查空间向量的运算,意在考查学生的空间想象能力、逻辑推理能力及运算能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点

(1)求证:AN∥平面 MBD;  
(2)求异面直线AN与PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中, ,中点,求直线与平面所成角的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平行四边形中,,且,以BD为折线,把△ABD折起,,连接AC.

(1)求证:;
(2)求二面角B-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面α,β和两条不重合的直线m,n,则下列命题正确的是(  )
A.若mα,nβ,αβ,则mnB.若mα,α∩β=n,则mn
C.若mn,m?α,n?β,则αβD.若m?α,n?α,mn,则mα

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在棱长为2的正方体ABCD -A1B1C1D1中,点O是底面ABCD的中心,点E,F分别是CC1,AD的中点,则异面直线OE与FD1所成角的余弦值为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,直线和平面所成角的余弦值大小为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,,M、N分别是BC、AB的中点,沿直线MN将折起,使二面角的大小为,则与平面ABC所成角的正切值为(   )
A.           B.           C.          D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四棱锥P-ABCD的底面ABCD是边长为2的正方形,PA⊥底面ABCDPA = 4,则PC与底面ABCD所成角的正切值为      

查看答案和解析>>

同步练习册答案