精英家教网 > 高中数学 > 题目详情
如图,已知圆C:x2+y2=2与x轴交于A1、A2两点,椭圆E以线段A1A2为长轴,离心率
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设椭圆E的左焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线x=-2于点Q,判断直线PQ与圆C的位置关系,并给出证明.

【答案】分析:(Ⅰ)直接求出a再利用离心率求出c即可求出椭圆E的标准方程;
(Ⅱ)先设出点P的坐标,利用条件求出点Q的坐标,再求出kOP和kPQ的表达式,利用点P在圆上,可以得直线PQ与圆C保持相切.
解答:解:(Ⅰ)因为,所以c=1(2分)
则b=1,即椭圆E的标准方程为(4分)
(Ⅱ)当点P在圆C上运动时,直线PQ与圆C保持相切(6分)
证明:设P(x,y)(),则y2=2-x2
所以
所以直线OQ的方程为(9分)
所以点Q(-2,)(11分)
所以(13分)
,所以kOP⊥kPQ=-1,
即OP⊥PQ,故直线PQ始终与圆C相切(14分)
点评:本题是对圆和椭圆的综合考查.在做这一类型题目时,一定要画出图象,利用图象来分析问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知圆C:x2+y2=2与x轴交于A1、A2两点,椭圆E以线段A1A2为长轴,离心率e=
2
2

(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设椭圆E的左焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线x=-2于点Q,判断直线PQ与圆C的位置关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆C:x2+y2+10x+10y=0,点A(0,6).
(1)求圆心在直线y=x上,经过点A,且与圆C相切的圆N的方程;
(2)若过点A的直线m与圆C交于P,Q两点,且圆弧PQ恰为圆C周长的
14
,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源:高考数学最后冲刺必读题解析30讲(30)(解析版) 题型:解答题

如图,已知圆C:x2+y2=2与x轴交于A1、A2两点,椭圆E以线段A1A2为长轴,离心率
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设椭圆E的左焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线x=-2于点Q,判断直线PQ与圆C的位置关系,并给出证明.

查看答案和解析>>

同步练习册答案