精英家教网 > 高中数学 > 题目详情
若函数f(x)=x3-3x2+ax-1的两个极值点为x1,x2且0<x1<x2,则的取值范围是( )
A.(2,+∞)
B.(-∞,4)
C.(1,5)
D.(2,4)
【答案】分析:由已知,x1,x2且是方程f(x)=0的两不等正实数根,求出a的取值范围,再根据根与系数的关系将x12+x22变形为两根之积或两根之和的形式,化为关于a的表达式求解.
解答:解:f(x)=3x2-6x+a,
函数f(x)=x3-3x2+ax-1的两个极值点为x1,x2且0<x1<x2
即是说x1,x2且是方程f(x)=0的两不等正实数根,

解得0<a<3,
∴x12+x22=(x1+x22-2x1x2=4-
,4-∈(2,4).
故选D.
点评:本题主要考查了函数在某点取得极值的条件,根与系数的关系.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x3+
1
x
,则
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3x-1,x∈[-1,l],则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3mx2+nx+m2为奇函数,则实数m的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值,最小值分别为M,m,则M+m=
-14
-14

查看答案和解析>>

同步练习册答案