精英家教网 > 高中数学 > 题目详情
6.已知${(\root{3}{x^2}+3x)^n}$展开式中各项系数的和比它的二项式系数的和大4032.
(Ⅰ)求展开式中含x4的项;
(Ⅱ)求展开式中二项式系数最大的项.

分析 (Ⅰ)令x=1求出展开式各项系数和,与二项式系数和作差求得n,写出二项展开式的通项,由x的指数为4求出r,即可求得展开式中含x4的项;
(Ⅱ)由(Ⅰ)可得展开式中第4项的二项式系数最大,即r=3,代入通项得答案.

解答 解:(Ⅰ)令x=1得展开式各项系数和为4n,而二项式系数和为$C_n^0+C_n^1+…+C_n^n={2^n}$,
由题意得4n-2n=4032,即(2n-64)(2n+63)=0,得2n=64或2n=-63,
又∵n∈N*,∴2n=64,故n=6,
二项展开式的第r+1项为${T_{r+1}}={3^r}•C_6^r•{x^{\frac{12+r}{3}}}$,
令$\frac{12+r}{3}=4$,得r=0,
∴展开式中含x4的项为${T_1}={3^0}•C_6^0•{x^4}={x^4}$;
(Ⅱ)∵n=6,∴展开式中第4项的二项式系数最大,
即${T_{3+1}}={3^3}•C_6^3•{x^{\frac{12+3}{3}}}=540{x^5}$.

点评 本题考查二项式系数的性质,考查了二项式定理的应用,关键是熟记二项展开式的通项,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.(1)求函数$f(x)={log_{2x-1}}\sqrt{3x-2}$的定义域;
(2)求函数$y={(\frac{1}{3})^{{x^2}-4x}}\;\;,\;x∈[0,5)$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.方程互化
(1)2x+3y-1=0(化为极坐标方程)
 (2)ρ=2cosθ+4sinθ(化为直角坐标方程)
(3)$\left\{\begin{array}{l}{x=3-2t}\\{y=1-4t}\end{array}\right.$(t为参数)(化为普通方程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知p:对?m∈[-1,1],不等式${a^2}-5a-3≥\sqrt{{m^2}+8}$恒成立;q:?x∈R使不等式x2+ax+2<0成立,若p是真命题,q是假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|x2-16<0},B={x|x2-4x-5≥0}.
( I)求A∩B,A∪B;
( II)求A∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.C342+C344+…+C3434 被9除的余数是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={1,2,3,…,2017},B={${a_1},{a_{{2_{\;}}}},{a_3},{a_4},{a_5}$}.若B⊆A,且对任意的i,j(i∈{1,2,3,4,5},j∈{1,2,3,4,5}),都有|ai-aj|≠1.则集合B的个数用组合数可以表示成(  )
A.C${\;}_{2014}^{5}$B.$C_{2013}^5$C.$C_{2012}^5$D.C${\;}_{2011}^{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.(1-i)•i=(  )
A.1-iB.1+iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到回归直线方程y=bx+a,那么下列说法中不正确的是(  )
A.直线y=bx+a必经过点$(\overline x,\overline y)$
B.直线y=bx+a至少经过(x1,y1),(x2,y2),…,(xn,yn)中的一个点
C.直线y=bx+a的纵截距为$\overline y-b\overline x$
D.直线y=bx+a的斜率为$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$

查看答案和解析>>

同步练习册答案